
i

THÈSE POUR OBTENIR LE GRADE DE DOCTEUR
DE L’UNIVERSITÉ DE MONTPELLIER

En Informatique

École doctorale EDI2S

Unité de recherche LIRMM

Implémentation, analyse et améliorations bas-niveau
d’algorithmes quantiques pour le calcul scientifique.

Présentée par Adrien Suau
le 27 Octobre 2022

Sous la direction de Aida Todri-Sanial,
Gabriel Staffelbach et Eric Bourreau

Devant le jury composé de

Aida Todri-Sanial Directeur de recherche CNRS, LIRMM, Université de Montpellier (Maître de thèse)
Gabriel Staffelbach Chercheur CERFACS (Co-encadrant)
Éric Bourreau Professeur associé LIRMM, Université de Montpellier (Co-encadrant)
Vedran Dunjko Professeur associé LIACS, Université de Leiden (Rapporteur)
Omar Fawzi Directeur de recherche École Normale Supérieure de Lyon (Rapporteur)
Simon Perdrix Directeur de recherche INRIA, LORIA (Examinateur)
Stephan De Bièvre Professeur Université de Lille (Examinateur)
Marko Rančić Chef de projet TotalEnergies (Invité)

ii

iii

Remerciements
Cette thèse résulte d’une collaboration entre TotalEnergies, le Laboratoire d’Informatique, Robo-
tique et Microelectronique de Montpellier (LIRMM) et le Centre Européen de Recherche et de
Formation Avancée en Calcul Scientifique (CERFACS). Elle a été financée par TotalEnergies.

Je tiens tout d’abord à remercier les membres du jury pour avoir accepté d’évaluer mes
travaux de thèse. Un grand merci à Vedran Dunjko et Omar Fawzi pour l’intérêt qu’ils ont
porté à mes travaux en tant que rapporteurs, ainsi qu’à Simon Perdrix et Stephan De Bièvre
pour leurs remarques en tant qu’examinateurs. Je veux aussi remercier Marko Rančić pour ses
encouragements.

Un énorme merci à mes encadrants de thèse, Aida Todri-Sanial, Gabriel Staffelbach et Éric
Bourreau qui m’ont épaulé durant ces 3 années et ont su me guider jusqu’à la fin de la rédaction
du manuscrit. Ils ont su m’offrir un environnement propice au développement de ma recherche
scientifique et rendre l’expérience de ces 3 années de thèse agréable.

Je veux réserver dans ces remerciements une place spéciale à Henri Calandra, sans qui cette
thèse n’aurait jamais vu le jour. Il m’a permis de commencer cette thèse dans un environnement
de recherche passionnant au coeur d’un groupe soudé. Je suis aussi très reconnaissant de toutes
les discussions que nous avons pu avoir ensemble, que ce soit sur le calcul quantique ou d’autres
sujets, autour d’un “café virtuel”. Je tiens aussi à remercier les membres de ce fameux groupe,
Elvira Shishenina, Charles Moussa et Jean-Baptiste Latre, pour toutes les discussions que nous
avons eu ensemble et les aventures que l’on a pu partager.

Les premiers mois de ma thèse ont été effectués au LIRMM, où j’ai pu rencontrer au fil
des années mes collègues Montpellierains que je remercie pour l’ambiance dans le couloir et la
bonne humeur générale. Parmis eux, j’aimerai tout particulièrement remercier Siyuan Niu, qui
a réalisé sa thèse en calcul quantique en même temps que moi, pour toutes les collaborations
que nous avons pu réaliser ensemble, telles que l’animation d’un hackathon à Montpellier, une
collaboration de recherche, la participation à un autre hackathon, . . . Finalement, je veux
remercier Jean-Michel Tores pour son indéfectible bonne humeur et son support tout au long de
ces 3 années.

La majorité de ma thèse s’est déroulée au CERFACS, à Toulouse, où j’ai rencontré énor-
mément de collègues qui sont au fil du temps devenus des amis. Merci à Thomas L., Félix,
Théo, Antoine, Clovis, Jonathan, Guillaume, Lionel, Nicolas B., Thomas M., Etienne, Minh,
Nicolas U., Aurélien et toutes les personnes avec qui j’ai pu discuter au CERFACS! Un grand
merci aussi à l’équipe administrative du CERFACS, Brigitte, Lydia, Michèle ainsi qu’à l’équipe
CSG, Fred, Isabelle, Nicolas, Patrick, Fabrice et Gérard, qui m’ont accueilli dans leurs bureaux
pendant quelques mois et ont toujours été là en cas de soucis informatique.

Parmis ces amis du CERFACS déjà cités, je veux tout particulièrement remercier les “Canal
riders”, qui m’ont permis de passer la dernière semaine de rédaction, la plus compliquée, dans
le meilleur environnement possible!

Je veux aussi remercier mes amis de longue date qui m’ont supportés pendant cette période
de ma vie, Paul, Emeline, Jean-Côme, Eddy, Patrick et Mathilde. La fin de ma thèse aurait été
bien plus compliquée sans le support de ma copine, Laura, que je tiens à remercier du fond du
coeur pour son soutien.

Finalement, rien de ce qui est écrit dans les pages qui suivent n’aurait été possible sans le
soutient continu de ma famille. Un énorme merci à ma mère et à mon père, qui m’ont permis
de suivre la voie que je voulais tout au long de mes études et qui m’ont toujours soutenu, ainsi
qu’à mes frères Paul et Gabriel et à toute ma famille!

iv

v

Abstract
Quantum computing is a new paradigm that may be able to solve some very specific and in-
teresting problems faster than classical computing. But to reach the regime where quantum
computers can outperform their classical counterparts, several crucial milestones must be at-
tained. Hardware needs to improve its error rates and qubit number, algorithms have to evolve
in order to be able to run correctly on noisy hardware, implementations and compiler should be
tailored to the targeted hardware, analysis of quantum programs and quantum states will likely
need improvements.

In this thesis, we study several of these milestones and extend over the state of the art,
trying to get closer to the quantum supremacy regime. We first implemented a non-trivial
quantum algorithm, analysed its behaviour and performed advanced resources estimation. From
this implementation and analysis, we confirmed that current quantum hardware could not run
such an implementation, even after taking into account hardware intricacies and an extensive
and comprehensive optimisation efforts. These optimisation efforts revealed a lack of tools to
synthetically visualise the quantum circuit that could guide optimisation similar to classical
computing ones. This omission led to the development of qprof, a quantum program analysis
tool able to efficiently provide a human-readable structure and cost report from the analysis of
a given quantum circuit.

Next, we present a classical algorithm to solve the qubit routing problem, one of the most
costly steps in quantum compilers, by taking into account hardware calibrations to tailor the
final solution to the targeted hardware. We describe how the algorithm works and find that
it can improve the fidelity of the quantum computations when it is used. We also implement
a variational algorithm to solve linear systems of equations and analyse its requirements and
behaviour when executed on real quantum hardware. Finally, we performed an extensive study
on single-qubit quantum noise and introduced a new visualisation of quantum states. Using this
new representation, we isolated errors in qubits prepared in a known quantum state that are
currently not corrected by the automatic calibration of quantum chips.

vi

Résumé
Le calcul quantique est nouveau paradigme qui serai en capacité de résoudre certains problèmes
spécifiques plus vite qu’un ordinateur classique. Mais pour atteindre le régime dans lequel les
ordinateurs quantiques seront plus efficaces que leurs équivalents classiques, plusieurs étapes
cruciales doivent être atteintes. Les taux d’erreur des puces quantiques actuelles doivent être
drastiquement améliorés, tout comme leur nombre de qubits, les algorithmes doivent évoluer
pour prendre en compte le taux d’erreur élevé des puces, les compilateurs et implémentations
doivent être adaptés à la puce quantique qui sera utilisée pour l’exécution et les façons d’analyser
des états ou programmes quantiques nécessitent des améliorations.

Dans cette thèse, nous nous concentrons sur certaines de ces étapes et améliorons l’état
de l’art en essayant de se rapprocher le plus possible du régime où les ordinateurs quantiques
auront un avantage sur les ordinateurs classiques. Nous commençons par montrer comment
nous avons implémenté un algorithme quantique non trivial et analysé son comportement ainsi
que les ressources nécessaires à son exécution. Cette analyse a confirmé que les puces quan-
tiques actuelles étaient incapables d’exécuter ce genre d’implémentation, même après avoir pris
en compte les subtilités dues au matériel et optimisé grandement le programme. Cet effort
d’optimisation a donné lieu à l’implémentation de l’outil qprof, un profileur de programme
quantique capable d’analyser des implémentations et de générer un rapport textuel et lisible
résumant la hiérarchie des appels et leur coût approximatif.

Nous présentons aussi un algorithme classique pour résoudre le problème du routage de qubit,
une des étapes les plus coûteuse en terme de portes quantiques additionnelles. Nous avons aussi
implémenté un algorithme variationnel permettant de résoudre des systèmes linéaires et analysé
son comportement sur les puces quantiques actuelles ainsi que les besoins en ressources afin
d’exécuter cet algorithme. Finalement, nous avons effectué une étude sur les erreurs présentes
sur des qubits isolés et introduit une nouvelle visualisation permettant de mettre en avant des
erreurs systématiques et non mitigées par les calibrations automatiques réalisées à intervalles
réguliers sur les puces.

Contents

Remerciements iii

Abstract v

Résumé vi

Contents vii

Contributions 1

I Foreword 3

1 Introduction to Quantum Computing 5
1.1 History of quantum computing . 5
1.2 Models of quantum computation . 6

1.2.1 Adiabatic quantum computing . 7
1.2.2 Measurement-based quantum computing 7
1.2.3 Gate-based quantum computing . 7

1.3 Quantum computing theoretical framework . 8
1.3.1 Closed quantum system . 8
1.3.2 Quantum operations . 9
1.3.3 Composite quantum systems . 10
1.3.4 Quantum measurement . 11
1.3.5 Non-closed quantum systems . 13

1.4 Visual representations in quantum computing . 13
1.4.1 Visualisation of quantum states . 14
1.4.2 Representation of quantum computation 14

2 Scientific computing and quantum computing 17
2.1 Scientific computing . 17

2.1.1 Examples of applications scientific computing 18
2.1.2 Mathematical problems encountered in scientific computing 19
2.1.3 How are these problems solved on classical computers? 21

2.2 Usage of quantum computing . 23
2.2.1 Hamiltonian simulation . 24
2.2.2 Systems of linear equations . 25
2.2.3 Partial differential equation solvers . 27
2.2.4 Quantum algorithms for optimisation . 28

viii

II Algorithm implementation 29

3 PDE solver 31
3.1 Problem considered . 31

3.1.1 Type of problems . 31
3.1.2 Choice of the PDE . 32

3.2 Implementation . 33
3.2.1 Sparse Hamiltonian simulation algorithm 34
3.2.2 Product-formula implementation details 34
3.2.3 Quantum wave equation solver . 37
3.2.4 Hermitian matrix construction and decomposition 37
3.2.5 Oracle construction . 40

3.3 Results . 50
3.3.1 Hamiltonian simulation . 51
3.3.2 Wave equation solver . 52
3.3.3 Gate count analysis . 56

3.4 Additional work . 58
3.4.1 Implementation of higher-order Laplacians 58
3.4.2 Optimisation of the implementation . 62

3.5 Discussion . 63
3.6 Supplementary material . 64

III Algorithm analysis 67

4 qprof 69
4.1 Introduction . 70
4.2 Related work . 71

4.2.1 Classical profilers . 71
4.2.2 Quantum profilers . 71

4.3 How does qprof works? . 73
4.3.1 General structure . 73
4.3.2 The qcw package . 73
4.3.3 Core data structures and logic . 75
4.3.4 Exporters . 79

4.4 Complexity and runtime analysis . 83
4.4.1 Asymptotic complexity of qprof . 83
4.4.2 Real-world execution time . 86

4.5 Code examples and practical applications . 86
4.5.1 Benchmarking a simple program . 87
4.5.2 Grover’s algorithm . 89
4.5.3 Quantum wave equation solver . 89

4.6 Discussion . 93
4.6.1 Comparison with the state-of-the-art . 93
4.6.2 qprof and quantum circuit compilation . 93
4.6.3 qprof and hardware-aware timings . 95
4.6.4 Limitations of the gprof exporter . 95
4.6.5 qprof and NISQ circuits . 95
4.6.6 qprof and dynamical circuits . 95

4.7 Conclusion . 96

ix

IV Targetting NISQ 97

5 Hardware aware compiler 99
5.1 Introduction . 99

5.1.1 Motivational examples . 100
5.1.2 Automatically adapting any quantum computation to a given topology . . 102
5.1.3 Examples of quantum hardware . 103

5.2 Proposed solution . 104
5.2.1 Hardware-aware SWAP- and Bridge-based heuristic search 104
5.2.2 Initial mapping . 111
5.2.3 Metrics . 113

5.3 Evaluation and comparison of the proposed HA Algorithm 114
5.3.1 Methodology . 114
5.3.2 Experimental results . 115

5.4 Conclusion . 117

6 Variational quantum linear solver 121
6.1 Introduction . 121

6.1.1 Quantum error correction . 122
6.1.2 Quantum error mitigation . 122

6.2 Variational quantum algorithms . 123
6.2.1 General idea . 123
6.2.2 Ansatz . 124
6.2.3 Barren plateaus . 126

6.3 The Variational Quantum Linear Solver . 127
6.3.1 Cost functions . 127
6.3.2 Linear systems of interest . 128

6.4 Results of the study . 131
6.4.1 Global versus local cost function . 132
6.4.2 Dependence on the condition number κ 132
6.4.3 Dependence on the size of the linear system 135
6.4.4 Running VQLS on noisy hardware . 137

6.5 Conclusion . 137

V Noise characterisation 139

7 Single qubit tomography visualisation 141
7.1 Introduction . 141
7.2 Single-Qubit State Tomography . 142

7.2.1 Maximum-Likelihood Quantum State Tomography 143
7.2.2 Specialising to Single-Qubit State Tomography 143
7.2.3 Single-Qubit State Tomography Experiment Design 144

7.3 Vector Field Visualisation of Single-Qubit State Tomography 146
7.3.1 Vector Field Visualisation Examples . 146
7.3.2 Visualisation of State Degradation . 148

7.4 Signatures of Single-Qubit Data Corruption . 150
7.5 Open-Source Software Implementation . 150
7.6 Conclusion . 150

x

VI Outlooks and conclusion 153

8 Conclusion 155
8.1 Important results . 155
8.2 Research perspectives . 156

Bibliography 159

Contributions

The work described in this manuscript has been has been performed within a collaboration be-
tween CERFACS (Centre Européen de Recherche et Formation Avancée en Calcul Scientifique),
LIRMM (Laboratoire d’Informatique, Robotique et Microélectronique de Montpellier) and To-
talEnergies, that funded this PhD. The thesis started at a cornerstone moment of quantum
computing, when several world-wide companies introduced their own framework to help devel-
oping quantum algorithms. Some companies such as IBM even made publicly available some of
their quantum chip to let researchers perform experiments on real quantum hardware.

These incredible advances and the fact that experiments “hands-on” with a quantum com-
puter became possible helped a lot to change the public vision on quantum computing from
a purely theoretical field to a more practical research subject that might help in solving real-
world problems. But with this realisation came the question of the timescales involved and the
engineering and research efforts required to solve such problems using quantum computing.

This thesis aims at providing an answer to this question with the current state of the art
in quantum computing. More specifically, we study in this manuscript several questions related
to the application of quantum computing to solve scientific computing problems. The following
paragraph briefly introduce the different chapters of this thesis along with the work presented
in these chapters.

Chapter 1 (Introduction to Quantum Computing) We introduce the mathematical tools
and notations commonly used to define quantum computing and re-used in every section of
this manuscript. We define the different models of quantum computation and delve into the
definition of the gate-based model this work is based on. We end the chapter by introducing a
few visualisations that are re-used in Chapters 3 to 7.

Chapter 2 (Scientific computing and quantum computing) We review the problems
included in the “scientific computing” field and perform a more in-depth explanation of some
of the most representative and impactful applications that were made possible by the rise of
scientific computing. We then study how these problems are formulated using a mathematical
formalism, and list some of the classical algorithms and methods used to solve these mathe-
matically reformulated problems. The second part of the chapter is interested in the quantum
algorithms and methods that have been introduced in the last few years or decades to solve
these mathematical problems. The chapter ends by introducing the current state-of-the-art on
software and hardware used in quantum computing.

Chapter 3 (PDE solver) We implement a non-trivial partial differential equation solver
able to solve the 1-dimensional wave equation with Dirichlet boundary conditions. A complete
resources requirement analysis has been performed on the implementation and show that the
implementation is effectively able to solve the wave equation by testing it on a quantum computer
simulator and comparing it to the result obtained with classical methods. We finish the study by
reporting on our findings on the optimisation of the implementation and we present a real-case
study on the usage of profilers for quantum programs.

2

Chapter 4 (qprof) We introduce a new software able to analyse any quantum circuit imple-
mentation and to output a profiling report. The tool introduced, called qprof (which stands for
quantum prof iler), is able to understand quantum circuit from a variety of different quantum
computing frameworks thanks to a framework-agnostic representation of the quantum circuit
model implemented specifically for qprof. Its performances are studied on several large quan-
tum circuits implementing Shor’s algorithm, Grover’s algorithm or the wave equation solver
presented in Chapter 3. The reports produced by qprof are standard and can be post-processed
with well-established tools to produce call-graphs, a very concise visual representation of the
hierarchy between each of the quantum routines used in the circuit. qprof has been the most
helpful tool when trying to optimise the quantum circuit implementation of Chapter 3.

Chapter 5 (Hardware aware compiler) We improve a crucial part of the quantum circuit
compiling stack by introducing a qubit-mapping algorithm able to dynamically change its results
according to the hardware calibrations data provided. In addition to the calibration-aware
method, we introduce an innovative way of choosing the kind of quantum gate that will be
inserted at each step of the algorithm. By introducing a new way of choosing, at each step,
the best quantum gate to insert in order to make the compiler quantum circuit compliant with
the hardware topology, the new method introduced outperforms its competitor both in terms
of circuit fidelity and additional gates while retaining a good asymptotic complexity and being
efficient in practice.

Chapter 6 (Variational quantum linear solver) We study the practical implementa-
tion of a variational quantum algorithm able to solve systems of linear equations. We start
by performing a review of the currently available quantum hardware, often denoted as Noisy
Intermediate-Scale Quantum (NISQ) hardware. With their low (often < 100) number of qubits
and their relatively high (typically ≈ 1% for 2-qubit quantum gates) error-rates, today’s quan-
tum hardware cannot realistically execute quantum algorithms such as Shor’s or Grover’s algo-
rithm. Variational quantum algorithms try to address this issue by reformulating the problem
as the minimisation of a cost function, which helps in reducing the size of the quantum circuits
executed. The runtime and convergence of the Variational Quantum Linear Solver (VQLS) al-
gorithm is then studied on several systems of linear equation of interest. The chapter ends by
comparing the results obtained on real quantum hardware with the different results obtained on
simulators.

Chapter 7 (Single qubit tomography visualisation) We end the manuscript by an ex-
ploratory study of single-qubit quantum state tomography as a way to improve our under-
standing of hardware noise through measurements. In this chapter we introduce a new way of
visualising single-qubit tomography data. We perform topography experiments on several quan-
tum chips from IBM and show that our new visualisation is able to highlight unexpected noise
features. We envision that this visualisation can be exploited to improve our understanding of
single-qubit noise as well has the impact of error-mitigation techniques on said noise. We also
note inconsistencies across the different reconstruction methods employed in the tomography
study and that are very likely due to systematic biases in the output of the quantum chips.

Part I

Foreword

3

Chapter

1
Introduction to Quantum Com-
puting

We start this manuscript by a short introduction to quantum computing. In Section 1.1 we
first dive into the historical steps and research milestones that ended up in the creation of the
field. Then, the mathematical framework used to describe quantum computing is introduced in
Section 1.3 and Section 1.2. Finally, a few visualisations that will be used across this manuscript
are introduced in Section 1.4.

Contents
1.1 History of quantum computing . 5
1.2 Models of quantum computation . 6

1.2.1 Adiabatic quantum computing . 7
1.2.2 Measurement-based quantum computing 7
1.2.3 Gate-based quantum computing . 7

1.3 Quantum computing theoretical framework 8
1.3.1 Closed quantum system . 8
1.3.2 Quantum operations . 9
1.3.3 Composite quantum systems . 10
1.3.4 Quantum measurement . 11
1.3.5 Non-closed quantum systems . 13

1.4 Visual representations in quantum computing 13
1.4.1 Visualisation of quantum states . 14
1.4.2 Representation of quantum computation 14

1.1 History of quantum computing

The story of quantum computing begins in the end of the 19th century with a few singular
behaviours observed by physicists that the theory of classical physics was unable to explain.
It was for example the case of what is now known as black-body radiation, for which classical
physics was failing to correctly describe all the features observed in practice.

A few decades of research forward, these “holes” in the theory of classical physics were
gradually patched by introducing several hypothesis that would explain on a case-by-case basis
the conflicting observations: energy is distributed as discrete quantas (or “energy elements” from
Planck’s initial formulation [1]), particles can show wave characteristics, and waves can exhibit
particle characteristics. Even though these assumptions were successfully explaining most of the
controversial behaviours observed physically, they were only a few patches introduced in order
to “fill the gap” in the current theory and a complete theory that would explain rigorously these
behaviours from the ground up was still missing.

6 Chapter 1. Introduction to Quantum Computing

A real formalisation of the theory, now called modern quantum mechanics, only started in
1927 with Heisenberg formulating an early version of his famous uncertainty principle [2]. The
basis of the theory of modern quantum mechanics was then introduced in 1930 by Paul Dirac
in his famous textbook [3]. Two years later, John Von Neumann formulated a rigorous basis for
quantum mechanics using linear operators on Hilbert spaces [4], still widely used nowadays.

In parallel to the advances in our understanding of quantum physics, a new field that will
soon be called “computer science” is introduced in 1936 by Turing [5]. In his work, Turing
defines the theoretical framework that will ultimately lead to “computers”, machines able to
perform computations way faster than humans.

The reunion of these two fields, quantum mechanics and computer science, only happens
several decades later with the introduction and formalisation of “quantum computing”, a field
of researched concerned about performing computations by using the laws of quantummechanics.
The field of quantum computing has been initially formalised by Benioff [6, 7]. In his works,
Benioff defines (in 1980) and refines (in 1982) the idea of a quantum Turing machine, the
analogue of the classical Turing machine, the theoretical foundation of all modern classical
computing introduced by Turing.

The definition of a quantum Turing machine given by Benioff in [6, 7] is based on what will
be known later as Hamiltonian simulation, one of the motivational problem for the emergence
of research in the field of quantum computing and the subject of a foundational paper by
Feynman [8]. But the computational model defining “quantum computations” was not complete
up until the work of Deutsch introducing in 1985 the universal quantum Turing machine in [9].

Since the complete mathematical formalisation of what is a “quantum computation”, a lot
of research have been performed to find quantum algorithms, i.e., algorithms able to use the
additional properties offered by a quantum computer over its classical counterparts and that
may make it more efficient at solving some tasks. One of the first quantum algorithm showing
in practice that quantum computers are able to solve some problems faster than their classical
counterpart has been described by Deutsch and Jozsa in 1992. In their work [10], Deutsch and
Jozsa introduce a quantum algorithm able to solve in constant time a problem that requires a
classical computer to perform an exponential number of operations.

The algorithm introduced by Deutsch and Jozsa is the first of a long list of quantum al-
gorithms. Among the most important milestones in this list, one can cite the algorithms of
Grover [11], that showed a quadratic speed-up of quantum computing over classical computing
on a very generic problem, and Shor [12] that introduced a quantum algorithm able to find
the prime factors of a given integer exponentially faster than classical computers, leading to
the proof that most of the asymmetrical cryptography algorithms used in the world were not
“quantum-proof”, i.e., are easy to break with a quantum computer.

A particularly interesting algorithm for the content of this manuscript has been introduced
in 2008 by Harrow, Hassidim, and Lloyd in [13] and is able to solve sparse systems of linear
equations exponentially faster than what a classical computer might be able to1. This quantum
algorithm will be the entry point for new researches to apply quantum computing to the field
of scientific computing, which is the subject of this manuscript.

1.2 Models of quantum computation

Before diving into the mathematical framework formalising quantum computing and that we will
be using through this manuscript, we present in this section a few of the models used to describe
quantum computation. These models of computation helps in defining without ambiguity what
is a “quantum computation” and how it can performed. Knowing about the different models
of computation is important as quantum algorithms might be defined using any one of these

1All the assumptions underlying this claim are detailed later in this manuscript.

1.2. Models of quantum computation 7

models. In the framework of this manuscript, we will be mostly using the gate-based model
of computation presented in Section 1.2.3, with only a few cited algorithms using quantum
annealing, a relaxed version of the model presented in Section 1.2.1.

The first complete model of computation that defined what a “quantum computation” might
be is the universal quantum Turing machine, introduced by Deutsch in [9]. Since then, different
models of computation have been devised through the years. These models of computations are
more “practical” than the universal quantum Turing machine model in the sense that they are
easier to use and reason about for a computer scientist.

All the models presented in the next sections have been shown to be equivalent to the
universal Turing machine model. Loosely speaking, this means that they are all able to represent
any quantum computation. Moreover, any quantum computation described within one of these
model can be translated to any other model with only a small (polynomial) impact on its
asymptotic complexity.

1.2.1 Adiabatic quantum computing

The adiabatic model of computation have been first introduced by Farhi et al. in [14] and is
universal as shown in [15, 16].

The model of computation always follow the same 2-step pattern. First, prepare the qubits
the computation will happen on in a quantum state |φ0〉 that is known to be the ground state
of the Hamiltonian H0 representing the interaction currently applied on the qubits. Secondly,
change slowly the interaction Hamiltonian to H1, whose ground state encodes the solution to
our problem. If the evolution happens slowly enough, the state in which the qubits are left in
at the end of the evolution (i.e., when H1 is the interaction Hamiltonian) is the ground state of
H1. This is guaranteed by the adiabatic theorem that has been proved in [17].

1.2.2 Measurement-based quantum computing

Measurement-based quantum computing, also known as “One-way quantum computing”, is a
model of computation in which operation are only performed by single-qubit measurements
on a known quantum state. The model of measurement-based quantum computing can also be
decomposed into 2 main steps that are state-preparation and measurement: all the computations
start by preparing a known, highly entangled, quantum state and the actual computing logic is
implemented by performing successive single-qubit measurements on this quantum state. This
model as been first introduced by Raussendorf and Briegel in [18], and its universality when
using cluster states [19], has been proved in [20].

1.2.3 Gate-based quantum computing

The models of computation presented in Sections 1.2.1 and 1.2.2 are quite different from the
classical model of computation programmers and theoreticians are used to. Closer to well
known models of classical computation, the gate-based model of quantum computation is used
extensively in the quantum computing community. This model of quantum computation can be
described by a sequential process consisting of three steps.

First, all the qubits that will be used during the quantum computation should be initialised
to a known quantum state. It is common to initialise individually each of the qubits to the
|0〉 quantum state. This choice is motivated by the fact that the quantum state |0〉 is often
represented physically by the ground state of the qubit, which is “easy” to prepare. Then, the
actual computation is performed. Quantum gates are applied in a specified order to evolve the
qubits toward the desired final quantum state. Finally, one or more qubits are measured in order
to extract the result of the quantum computation.

8 Chapter 1. Introduction to Quantum Computing

There exist a few variations to the gate-based model of quantum computation described
here, but these variations do not change the “computational power” of the model. To name a
few, the initial state might be changed to any other quantum state, mid-circuit measurements
or classical-feedback (i.e., using the result of a mid-circuit measurement to change the gates that
will be executed next) might also be allowed.

The description of the full quantum computation, containing the three steps of qubit initiali-
sation, quantum gate application and final measurements listed above, is often called a quantum
circuit. Quantum circuits are the most widely used way to represent a quantum algorithm in
the literature as of today. As noted in the beginning of this section, the gate-based is also very
close to the usual model of classical computing where instructions are executed sequentially on
a processing unit.

This manuscript will exclusively use the gate-based model of quantum computation and
quantum circuits to describe algorithms. In order to efficiently and unambiguously communicate
a quantum computation, we will use the standard representation of quantum circuits that is
described in Section 1.4.2.

1.3 Quantum computing theoretical framework

Before diving into the relationship between quantum computing and scientific computing, we
introduce the theoretical foundations that have been mostly introduced in [4] and are used to
describe quantum computations. Having a well established and robust framework that describes
the different components defining a “computation” is crucial. It allows to build algorithms
according to the rules defined, reason about their computational complexity, and restrict the
different models of computation to match with what is physically possible.

The theoretical framework formalising the field of quantum computing was introduced in
1932 by John Von Neumann in [4] and is still widely used nowadays. It makes an extensive use
of linear algebra to define each of the components used to formally explain what is a “quantum
computation”. This section is devoted to introduce these components. The definitions introduced
in the following paragraphs will be re-used throughout the document.

1.3.1 Closed quantum system

A quantum system can be any physical object, for example a few atoms, photons or electrons,
that can be measured to extract some physical property of the system such as momentum,
position, charge, etc. For a measured quantity that has N possible classical outcomes denoted
ψ0, ψ1, . . . , ψN−1, the quantum measurement outcomes are often written using the Dirac (or
bra-ket) notation: |ψ0〉, . . . , |ψN−1〉 (see Definition 2).

A closed quantum system is a quantum system that is supposed to be perfectly isolated from
any exterior interaction. Closed quantum systems are particularly useful as they are considered
to be systems on which we have full control, i.e., that does not experience any errors during the
computation.

Definition 1 (Hilbert space). A Hilbert space H is a complex-valued vector space equipped
with a scalar product 〈·, ·〉 that is:

• Conjugate symmetric:
∀(x, y) ∈ H2, 〈x, y〉 = 〈y, x〉 (1.1)

• Linear in its first argument:

∀(x1, x2, y) ∈ H3, ∀(a, b) ∈ C2, 〈ax1 + bx2, y〉 = a 〈x1, y〉+ b 〈x2, y〉 (1.2)

1.3. Quantum computing theoretical framework 9

• Positive definite:

∀x ∈ H,
{
〈x, x〉 > 0 if x 6= 0
〈x, x〉 = 0 if x = 0

(1.3)

Postulate 1 (State space and state vector). Any closed quantum system can be associated with
a corresponding Hilbert space H known as the state space. The system state is completely (but
not necessarily uniquely) described by its state vector, a unit-norm (according to the 2-norm)
vector in H.

Quantum states are often visually represented by using the standard Dirac (or bra-ket)
notation used in quantum mechanics and presented in Definition 2.

Definition 2 (Braket notation). The ket |·〉 is used to represent a vector (quantum state)
from the Hilbert space H considered when studying a particular quantum system. The bra 〈·|
represents the complex-conjugate of the corresponding ket, i.e.,

∀x ∈ H, 〈x| = |x〉† = |x〉T . (1.4)

The scalar product is often written using a condensed form of the braket notation:

∀(x, y) ∈ H2, 〈x, y〉 = 〈x| |y〉 = 〈x|y〉 . (1.5)

The quantum state representing the state of a given closed system is denoted as a pure
quantum state. Following Postulate 1, pure quantum states are represented as unit-norm vectors
in the N -dimensional Hilbert space defined by the orthonormal basis (|ψi〉)06i6N−1. As such,
any pure quantum state can be written as

N−1∑
i=0

αi |ψi〉 (1.6)

with αi ∈ C, ∀0 6 i 6 N − 1 and verifying the unit-norm condition

N−1∑
i=0
|αi|2 = 1 (1.7)

of Postulate 1.
The simplest quantum mechanical system, and the system we will be using the most in this

manuscript, is called the qubit. It is represented as a unit-norm vector from 2-dimensional state
space spanned by the orthonormal basis {|0〉 , |1〉}, also called the computational basis.

Definition 3 (Quantum superposition). One of the fundamental properties of a quantum system
that differentiate it from a classical system is superposition. Mathematically, a qubit is in a
“superposition” if its state can be written as

|ψ〉 = α |0〉+ β |1〉 (1.8)

with α 6= 0 and β 6= 0.

1.3.2 Quantum operations

In order to be able to perform computations on a quantum system we should be able to manip-
ulate its quantum state through the application of quantum operations. Quantum operations
are defined by Postulate 2 as unitary evolutions.

10 Chapter 1. Introduction to Quantum Computing

Postulate 2 (Evolution of a closed quantum system). A closed quantum system evolution
between any initial time t1 and final time t2 is described by a unitary transformation. This
means that for any times t1 and t2, there is a unitary matrix U such that

|ψt2〉 = U |ψt1〉 . (1.9)

Equivalently, the state of a closed quantum system is governed by the Schrödinger equation

i
d

dt
|ψ〉 = H |ψ〉 (1.10)

where H is the Hamiltonian of the quantum system and the reduced Planck constant } has been
set to 1 (or equivalently absorbed in the Hamiltonian H).

Quantum operations (or evolutions) are often denoted as quantum gates, using an analogy
with logical gates from classical computing. In the particular case of a single isolated qubit,
several gates are of particular interest. Specifically, Pauli matrices X, Y and Z defined as

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(1.11)

widely used, along with the Hadamard gate denoted H and that acts as

H = 1√
2

(
1 1
1 −1

)
. (1.12)

1.3.3 Composite quantum systems

Two closed quantum systems Q0 and Q1 can be represented as one larger closed quantum system
Q, called a composite quantum system. In such a case, the state spaces and state vectors from
each of the independent and closed quantum systems Q0 and Q1 are composed according to
Postulate 3.

Postulate 3 (Composite closed quantum systems). The state space H of the composite closed
quantum system Q composed of two closed quantum systems Q1 and Q2 with state space H1 and
H2 can be described with the tensor product of H1 and H2:

H = H1 ⊗H2. (1.13)

The quantum states compose in the same way:

∀ (|ψ1〉 , |ψ2〉) ∈ (H1, H2), |ψ〉 = |ψ1〉 ⊗ |ψ2〉 ∈ H. (1.14)

The properties of the tensor product operation ⊗ allow to deduce that the dimension of
a composite quantum system is given by the product of the dimensions of its constituents.
Specifically, let Q0, Q1 and Q2 be three qubits (i.e., 2-dimensional state spaces), then the
composite system Q = Q0 ⊗ Q1 ⊗ Q2 is a 8-dimensional state space. In general, a composite
system composed of n qubits is a 2n-dimensional state space.

Composite quantum systems consisting of n qubits are very frequently used. When using the
standard computational basis, it is common to use the simplified notation |0〉⊗ |1〉⊗ |0〉 = |010〉
for these composite systems. Moreover, if the context is sufficiently clear, the notation can
be simplified even further by replacing the binary digits by their representation in base 10:
|010〉 = |2〉.

Note that this notation needs context at least to avoid any confusion on the endianness
convention used (either big-endian |10110〉 = |24〉 or little-endian |10110〉 = |13〉) and the actual
number of qubits used (the state |2〉 might be interpreted, using the big-endian convention, as
|10〉, |010〉, |0010〉, . . .).

1.3. Quantum computing theoretical framework 11

Definition 4 (Quantum entanglement). The second fundamental property of quantum physics
that complements the quantum model of computation is entanglement. Mathematically, two
quantum systems are entangled when it is not possible to write their quantum state as a tensor
product of the individual state of each system. In other words, it is not possible to describe
fully one of the entangled quantum system without considering the other.

For example, the Bell state ∣∣∣Ψ+
〉

= |01〉+ |10〉√
2

(1.15)

is entangled because it impossible to express it as a tensor product of two single-qubit states:

(α1 |0〉+ β1 |1〉)⊗ (α2 |0〉+ β2 |1〉) (1.16)

with |α1|2 + |β1|2 = 1 and |α2|2 + |β2|2 = 1. On the other side, the state

|00〉+ |01〉√
2

= |0〉 ⊗ |0〉+ |1〉√
2

(1.17)

is not entangled as it can be decomposed as the tensor product of two 1-qubit states.
The introduction of entanglement raise the question of how it is created between two quantum

systems. As for any manipulation involving quantum states, entanglement between two quantum
systemsQ0 andQ1 is created via the application of a specific quantum operation to the composite
quantum system Q = Q1 ⊗Q2.

A particularly interesting group of quantum gates when it comes to entanglement are con-
trolled gates that are able to apply a quantum operation to a quantum system (called target)
conditionally to the state of another quantum system (called control). One of the most used
controlled quantum gate is probably the controlled-NOT (also called controlled-X or CX). It
applies the X quantum gate (see Equation (1.11)) to a target qubit only when the state of the
control qubit is |1〉. The matrix representation of the CX gate when qubit are read using the
big-endian ordering is

CX = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.18)

In general, controlled quantum gates are not limited to one control qubit and can have an
arbitrary number of controls. In this case, the underlying quantum operation is applied only if
all the control qubits are in the state |1〉. The n-controlled-X gate that is the analogue of the
CX gate with n control qubits can be written as

CnX =
2n−2∑
i=0
|i〉 〈i| ⊗ I + |2n − 1〉 〈2n − 1| ⊗X. (1.19)

The 2-controlled-X gate is commonly named the Toffoli gate.

1.3.4 Quantum measurement

Considering a quantum system to be perfectly and completely isolated from the outside world
and evolving unitarily does raise a major issue: how does an implementer is supposed to read
the result of the quantum computation if the system the computation was performed on is not
reachable nor observable?

In practice, in order to measure the result of any quantum computation, the quantum system
used to perform the computation will need to be measured (or observed) by an external physical

12 Chapter 1. Introduction to Quantum Computing

system, a measurement device, that will make the result of the measurement available to the
experimenter. This means that, when measuring a quantum state, the quantum system is no
longer isolated and the quantum state might experience non-unitary transformations.

Postulate 4 (Quantum measurement or Born’s rule). A given quantum measurement is repre-
sented by a set of measurement operators {Mm} with m representing the index of the measure-
ment outcome associated with the measurement operator Mm. For a given quantum state |ψ〉,
the probability of measuring the outcome m is

〈ψ|M †mMm |ψ〉 (1.20)

and the quantum state after the measurement is

Mm |ψ〉√
〈ψ|M †mMm |ψ〉

. (1.21)

In order for the measurement operators to be physically meaningful, they should check∑
m

M †mMm = I (1.22)

where I is the identity matrix. The above condition ensures that the measurement probabilities
sum to 1 when considering all the possible outcomes m.

For closed quantum systems, a special case of Postulate 4 is used to model the measurement
operation: Projection-Valued Measurement (PVM) or projective measurement. A PVM is fully
described by a hermitian operator M with spectral decomposition

M =
∑
m

mPm (1.23)

where m is an eigenvalue of M and Pm a projector onto the eigenspace of M associated with m.
The possible measurement outcomes for the measurement encoded by M are its eigenvalues m,
and the probability of measuring the outcome m on the state |ψ〉 is

〈ψ|Pm |ψ〉 . (1.24)

After the measurement, if the measured quantity was m, the state |ψ〉 becomes

Pm |ψ〉√
〈ψ|Pm |ψ〉

. (1.25)

The most simple example of a PVM is the Pauli Z matrix, often denoted as σz. When
explicitly writing down the spectral decomposition of the σz matrix

Z = σz =
(

1 0
0 −1

)
= 1×

(
1 0
0 0

)
+ (−1)×

(
0 0
0 1

)
= |0〉〈0| − |1〉〈1| (1.26)

we end up having a PVM with the measurement outcomes 1 and −1, projecting onto the
sub-spaces created by the eigenvectors |0〉 and |1〉, i.e., the computational basis. This is the
reason why the standard measurement in quantum computing hardware is often denoted as a Z
measurement: the Z Pauli matrix is a PVM that models a measurement in the computational
basis.

1.4. Visual representations in quantum computing 13

1.3.5 Non-closed quantum systems

In Section 1.3.4 we had to introduce briefly the notion of non-closed quantum system in order to
model quantum measurement. But the assumption that a given quantum system can be perfectly
isolated does not hold in practice due to the immense engineering effort it would require, if at
all possible.

Non-closed quantum systems can be modelled by quantum states known as mixed states. A
mixed state is essentially a probability distribution of pure quantum states. Mathematically,
mixed quantum states are represented using the density operator formalism. Density operators
are represented using density matrices, conventionally denoted by the Greek letter ρ, that are
positive-definite, hermitian and of unit trace.

The density matrix representing a quantum state that is in the state |ψi〉 with a classical
probability pi is

ρ =
∑
i

pi |ψi〉〈ψi| . (1.27)

The density matrix representing the pure quantum state |ψ〉 is simply ρ = |ψ〉〈ψ|.
The operations described in Sections 1.3.2 and 1.3.4 have to be re-defined for the density

matrix formalism. Quantum gates are still represented as unitary matrices but applying a
unitary transformation U to the quantum state represented by the density matrix ρ gives the
density matrix

ρ′ = UρU †. (1.28)

Equivalently, quantum measurements can be re-framed into the density matrix formalism. Let
Mm be measurement operators and Tr [·] be the trace operation, the probability of obtaining
the result m by measuring the quantum state ρ is

p(m) = Tr
[
Mm

†Mmρ
]
. (1.29)

After measuring m, the quantum state ρ becomes

ρm = MmρMm
†

Tr
[
Mm

†Mmρ
] . (1.30)

This definition completes the theoretical framework used in quantum computing. But before
diving into the relationship between quantum computing and scientific computing in Chapter 2
we should mention the different models of computations that have been devised and used across
the years and formalise a few visualisations that will be used across the manuscript.

1.4 Visual representations in quantum computing
Visual representations of computations are of prime importance in quantum computing as they
are a very efficient way to represent high-level algorithms in a standard and well-known format
that is very quick to parse visually. Even though writing down the algorithm used to generate
the quantum computation is the most precise way of describing the said computation, the visual
representation allows a high-level overview of the main steps of the algorithm implementation
and as such is very much complementary to the written-down version.

In general, visualising a generic quantum state is a hard task. But being able to visualise
quickly small (i.e., 1-qubit) quantum states may help in understanding how they evolve when
quantum gates are applied on them, which proved to be a good tool to visualise dynamical-
decoupling sequences and single-qubit decoherence.

In this manuscript, we use extensively the quantum circuit visualisation presented in Sec-
tion 1.4.2. Moreover, Chapter 7 extensively use the 1-qubit state visualisation introduced in
Section 1.4.1.

14 Chapter 1. Introduction to Quantum Computing

1.4.1 Visualisation of quantum states

As defined in Section 1.3.1, pure quantum states can be represented by a state vector. A n-qubit
pure quantum state is represented by a vector of 2n complex numbers. The total number of
degrees of freedom of a n-qubit pure quantum state is

dfpure (n) = 2n+1 − 2 (1.31)

as each of the 2n complex number has 2 degrees of freedom, the unit-norm condition removes
one degree of freedom and the fact that quantum states only differing by a global phase are
equivalent also fixing one degree of freedom.

When considering mixed states the density matrix formalism is used, as defined in Sec-
tion 1.3.5. A n-qubit mixed state is represented by a positive semi-definite, hermitian matrix of
trace 1. Counting the degrees of freedom of such a matrix leads to

dfmixed (n) = 22n − 1 = 4n − 1 (1.32)

degrees of freedom.
Any visualisation attempting to represent faithfully a n-qubit pure (resp. mixed) quantum

state should be able to represent its 2n+1−2 (resp. 4n−1) degrees of freedom in a readable way.
This task quickly becomes unmanageable due to the exponential scaling of the number of degrees
of freedom for both pure and mixed quantum state and the fact that visualising high-dimensional
data is a hard problem as it requires to project the data to a 2- or 3-dimensional space and
making sure that the projected data is easily interpretable. But even though representing large
quantum states graphically seems to be an unbearable task, there exist ways to represent few-
qubit quantum states.

Note 1. For n = 1, dfpure (1) = 2 and dfmixed (1) = 3. This means that any 1-qubit pure
quantum state can be described by 2 independent parameters, and 3 independent parameters
are needed for a generic 1-qubit mixed quantum state.

The Bloch sphere is probably one of the most well-known visualisation for n = 1 qubits. In
order to define correctly the visualisation, let consider a generic 1-qubit mixed state represented
by its density matrix ρ.

Theorem 1 (Pauli decomposition). Any 2× 2 density matrix ρ can be decomposed as

ρ = 1
2 (I + ~a · ~σ) = 1

2 (I + axσx + ayσy + azσz) (1.33)

where ~a ∈ [−1, 1]3 is called the Bloch vector and should check |~a| 6 1.

Possible values for the different coordinates of the Bloch vector are exactly defining the unit
sphere in 3 dimensions, called the Bloch sphere in this context. Any mixed quantum state can
be represented as a point, defined by its Bloch vector ~a, within the Bloch sphere. Pure quantum
states are represented by a Bloch vector ~a such that |~a| = 1, i.e., points on the surface of the
Bloch sphere. An example of the Bloch sphere can be seen in Figure 1.1.

1.4.2 Representation of quantum computation

Quantum circuits, the element representing a computation in the gate-based model, is a con-
venient, easy-to-understand and standard representation of an actual quantum computation.
It allows one to uniquely and unambiguously represent any quantum computation using the
gate-based model.

1.4. Visual representations in quantum computing 15

θ

ϕ
γ

z = |0〉

x

y

|ψ〉

Figure 1.1: Representation of a 1-qubit quantum state |ψ〉 on the Bloch sphere. γ = |~a| = Tr
[
ρ2] is the

purity of |ψ〉. For γ = 1, the quantum state |ψ〉 is pure.

X

H

z

0

z

1

z

2

q0 = |0〉

q1 = |0〉

q2 = |0〉

c

q0

q1

q2

c = |101〉

1 2 3

Figure 1.2: Standard quantum circuit visualisation. The content of this image is described in Sec-
tion 1.4.2.

16 Chapter 1. Introduction to Quantum Computing

In this manuscript, we will mostly focus on the gate-based model of quantum computations
presented in Section 1.2.3. Consequently, quantum computations will be represented using the
quantum circuit formalism.

The standard visualisation used to represent a quantum circuit can be seen in Figure 1.2. In
the standard representation of a quantum circuit, each classical and quantum bit is represented
by an horizontal line. Classical (resp. quantum) bits are often denoted with the letter c (resp.
q). The classical (resp. quantum) bits might be indexed, in which case the index is added near
the qubit label, for example c3 (resp. q3). Classical or quantum bits that serve the same purpose,
e.g., several bits that are part from the same register, might be grouped together as a unique
horizontal line when there is no ambiguity.

Time evolves from left to right so qubits start in their initial state at the left-end of their
corresponding line and operations applied on a specific line (i.e., qubit) have to be executed
following their order from left to right. The operations ordering across qubits is not defined,
meaning that an operation O1 on a given qubit being “before” (i.e., to the left of) another
operation O2 on a different qubit does not imply that O1 is executed before O2.

In the first block of Figure 1.2, labelled 1, quantum register are all initialised in the state
|0〉. Qubits might be named after their purpose, for example qin for an input qubit or qcarry for
a qubit that will store the carry of an half-adder. Explicitly writing the |0〉 state is not required
as, by default, the qubits are supposed to be initialised in the |0〉 state. The initial value of
classical bits (or registers) is also often striped out from the visualisation as classical register
will most of the times be initialised when performing a quantum measurement.

The second block in Figure 1.2 contains quantum operations, also known as quantum gates.
Quantum gates are represented by rectangles and are overlapping with the horizontal lines
representing the qubits they act on. For example, the first quantum gate applied on qubit q0 is
the Pauli X gate. Similarly, the first gate applied to q2 is a Hadamard gate H.

The third gate applied in the quantum circuit represents a controlled-X operation: a small
filled black dot appears on the control qubit q0 and the gate (here an alternative representation
of the X gate) is applied on q2. Multiply-controlled quantum gates are shown just after the
controlled-X gate with two Toffoli (or doubly-controlled X) gates. The first Toffoli is controlled
by q0 and q1 whereas the second Toffoli gate is controlled by q0 and q2.

Finally, the third and last block represents the measurement operations applied at the end
of the quantum computation. A quantum measurement “gate” is always applied on a quantum
and a classical bit (or register). Without any precision, measurements are performed in the
computational basis (or Z basis). In order to avoid any ambiguity about the target classical bit
of each quantum measurement, a small index may be added near the classical register horizontal
line. In Figure 1.2, the result of the quantum measurement performed on q0 is stored in the
classical bit 0.

The final states of the classical or quantum bits might also be explicitly represented as in
the quantum circuit visualisation example in Figure 1.2.

Chapter

2
Scientific computing and quan-
tum computing

In this PhD we are interested by the potential applications of quantum computing to the scien-
tific computing field. This chapter is dedicated to introduce a few representative problems that
are studied within the scientific computing field. Most of the problems encountered in this field
can be re-phrased using one out of three generic problems that are linear systems, partial dif-
ferential equations and optimisation problems. These mathematical formulations are formalised
and several classical algorithms used to solve them are presented in this chapter. Finally, we
introduce some of the quantum algorithms that have been devised to solve these mathematical
problems, starting by the special case of Hamiltonian simulation and following with quantum
algorithms that can be applied to solve systems of linear equations, partial differential equations
or optimisation problems.

Contents
2.1 Scientific computing . 17

2.1.1 Examples of applications scientific computing 18

2.1.2 Mathematical problems encountered in scientific computing 19

2.1.3 How are these problems solved on classical computers? 21

2.2 Usage of quantum computing . 23

2.2.1 Hamiltonian simulation . 24

2.2.2 Systems of linear equations . 25

2.2.3 Partial differential equation solvers . 27

2.2.4 Quantum algorithms for optimisation 28

2.1 Scientific computing

Scientific computing encompasses a variety of different research fields that all have in common
their usage of computers to improve the understanding of complex problems and how to solve
them. Since the inception of the field, a large number of problems have benefited from the
power offered by computers. Thanks to its wide range of application and to the importance of
the problems it is able to solve, scientific computing is nowadays a very attractive field of research
that allows researchers and companies to push further the boundaries of what is possible. We
present in Section 2.1.1 some applications that were made possible thanks to the advances of
scientific computing. It turns out that most of these applications are instances of only a few
mathematical problems that are presented in Section 2.1.2. Finally a summary of the state of
the art of the hardware and tools used in the field is performed in Section 2.1.3.

18 Chapter 2. Scientific computing and quantum computing

2.1.1 Examples of applications scientific computing

The number of research problems that take advantage of the drastic increase of computing
power we have seen in the last few decades or that are using this computing power today is
substantial. The domains that have been heavily impacted range from weather forecast to
financial optimisation, with applications in engineering, social sciences or astrophysics. Some of
these applications are explained and developed in the following paragraphs.

Weather forecast

One of the most iconic examples of field that has been revolutionised by computers is probably
weather forecast. The goal of weather forecast is to predict accurately the weather conditions
(temperature, humidity, wind, rain, etc.) at a given physical location at a given time, having
access to anterior weather data. The accurate prediction of such quantities involves solving
complex physical process taking place in the atmosphere of the Earth and requires the collection
and aggregation of large amounts of data on past weather conditions.

The complexity of the equations involved along with the accuracy requirements and the
large amount of weather data that should be processed in order to predict the weather naturally
led to a numerical approach of the problem. One of the first successful attempt at predicting
the weather was performed on the ENIAC computer after at least one unsuccessful attempt at
solving the equations by hand-calculation [21].

Since then, the accuracy of weather forecast has been tremendously improved thanks to the
continuous increase of computing power available, the greatly enhanced quality of weather data
collected by meteorological stations and new numerical methods introduced.

Numerical simulation in the aeronautic industry

Building fast, secure and efficient planes is huge challenge that involves solving multiple problems
from radically different fields.

Due to the relatively high speed at which planes operate, they are particularly subject to
friction forces that ultimately reduce their efficiency through a loss of energy. In order to
minimise the effect of friction over the plane, its aerodynamics should be studied and improved.
The cost of designing, building and testing each and every envisioned variations of a plane in
order to determine which one result in the best aerodynamics (i.e., the less impact of friction
forces on the plane) would be tremendous and it turns out that simulating the aerodynamics of
the plane numerically is a way more affordable way.

But the study of aerodynamics is far from being the only problem encountered in aeronautic
industries. Another source of improvement that have been extensively studied (and still is)
concerns the engines efficiency. The more efficient an engine is, the less fuel it will need to
consume in order to complete a flight, which directly translates into reduced costs, pollution
and engineering to design a plane with a large enough tank.

This leads to yet another problem solved via numerical simulations: plane design and struc-
ture. The problem is to assert if a given plane design is able to withstand the physical constraints
imposed on the plane at take-off, landing and during the flight.

Finally, scientific computing and the increased computing capabilities are also used to op-
timise the aircraft take-off, known as the “aircraft climb optimisation problem”, in which all
the decisions from the take-off runway to the cruise phase are optimised to try to reduce to the
minimum the overall consumption of fuel.

Structure optimisation and simulation

Aerodynamics and structural integrity studies are also central problems in other industries such
as the automotive industry or in civil engineering.

2.1. Scientific computing 19

Despite having a way lower operational speed than planes, cars are also subject to non-
negligible aerodynamic friction forces which are detrimental to their efficiency. In addition to
the study of their aerodynamic behaviour at different speeds, numerical simulations also help in
planning the structural integrity the car and how its interior will be deformed in the event of an
accident.

Computers are also used to perform structural integrity simulations of buildings or bridges
in diverse situations such as earthquakes or strong wind. These simulations are able to check
numerically if a given building design will be able to withstand earthquakes of a given intensity
and how their structure will react to such an event, the final goal being to ensure that the
building will not collapse if an earthquake happens. Numerical simulations are also used to
modelise the effects of different wind profiles and intensity on the building by predicting the
situations where the it will be able to dampen resonance behaviours correctly.

Process optimisation

Scientific computing can also be used to solve problems based purely on the optimisation of a
quantity (i.e., that do not require the simulation of a physic system). A well known optimisation
problem that has several applications nowadays is the recommendation problem that consists in
providing suggestion for new content or items to a specific user, knowing its preference for other
contents or items and in general the preferences of multiple users. This problem is encountered
in many online streaming services when trying to optimise the time spent using the service and
on e-commerce websites to increase the volume of items sold.

A lot of “public use” infrastructures also require to solve complex optimisation problems. For
example, the problem of train scheduling can be reformulated as a large optimisation problem
that consists in maximising the “value” of the train offer to users (i.e., having trains as frequently
as possible while still being profitable and avoiding delays in case of problems) while obeying
to constraints such as the minimum required safety distance between each trains, the maximum
number of trains that can be stopped in a station at a given time, etc.

2.1.2 Mathematical problems encountered in scientific computing

Each of the problems or applications listed in Section 2.1.1 can be modelled as an instance of an
abstract mathematical problem. This section introduces three of the most used mathematical
problems in the field of scientific computing in general: systems of linear equation (Section 2.1.2),
partial differential equations (Section 2.1.2) and general optimisation problems (Section 2.1.2).

Systems of linear equations

Solving a system of linear equations is a problem that arises frequently in scientific computing
applications and that has been studied for decades. A system of linear equation is a set of one or
more linear equations involving the same variables. A simple example is given in Equation (2.1).{

3x+ y = 0
y + 3 = 0

(2.1)

Generically, a system of linear equations with m linear equations and n variables can be
written down as 

a11x1 + a12x2 + · · · + a1nxn + b1 = 0
a21x1 + a22x2 + · · · + a2nxn + b2 = 0

...
am1x1 + am2x2 + · · · + amnxn + bm = 0

(2.2)

20 Chapter 2. Scientific computing and quantum computing

where the aij and bi can be real, complex, or even more generic elements provided that the
operations of addition and multiplication are well defined operations on these elements.

Systems of linear equations are often re-phrased using the linear algebra formalism of vectors
and matrices. Using this formalism, the generic linear system in Equation (2.1) becomes

Ax+ b = 0 (2.3)

with

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn

 (2.4)

and

b =


b1
b2
...
bm

 . (2.5)

Partial differential equations

Partial different equations (PDEs) are probably one of the most used mathematical formalism
to describe the evolution of any physical system independently of its size or complexity. In the
formalism of PDEs, the state of the system studied is described by a function (often denoted by
f , u or v) that verifies a set of equations involving its partial derivatives. The function values
are unknown for most of its inputs, and the problems described by this PDEs requires to find
the values of the function for some set of inputs.

One of the most simple example of partial differential equation describes how heat spreads
in a conductive material with thermal diffusivity α. For a 3-dimensional material, the function
u(x, y, z, t) that gives the temperature at the point (x, y, z) at time t follows the following
equation

∂u

∂t
= α∆u = α

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
(2.6)

with ∆ the differential operator often called “Laplacian”.
In order for the partial differential equation to be well-defined, the values of the solution

should be restricted for some sets of inputs, often called initial conditions or boundary conditions
depending on the input variables used.

For example, the temperature of an empty room filled with a uniform gas (e.g., air) at an
initial temperature t0 = 10K, that has a thermal diffusivity of α, and with a discrete source of
heat located at the point (0, 0, 0) and initially at the temperature T0 = 1000K is given by the
solution of Equation (2.6) equipped with the initial conditions{

u (0, 0, 0, 0) = T0

u (x, y, z, 0) = t0, ∀ (x, y, z)
. (2.7)

Another good example is the temperature of piece of another material M (e.g., metal) at an
initial temperature t0 = 300K (i.e., 26.85◦C which is approximately room temperature) and with
a thermal diffusivity of α that is immersed into boiling water that always stay at temperature
T = 100◦C = 373.15K. The temperature evolution of the material M is given by the solution
of Equation (2.6) equipped with the initial and boundary conditions{

u (x, y, z, 0) = t0, ∀ (x, y, z) ∈M
u (x, y, z, t) = T, ∀t > 0, ∀ (x, y, z) 6∈M

. (2.8)

2.1. Scientific computing 21

The heat equation shown in Equation (2.6) is one simple example of a PDE but there exist
plenty of other, often more complex, PDE that describe the evolution of physical systems. Exam-
ples include PDEs describing fluid mechanics (Navier-Stokes equations), electric and magnetic
fields (Maxwell’s equations), the price evolution of a European call or put in the Black-Scholes
financial model (Black-Scholes equation) or the evolution of systems abiding to the rules of
quantum mechanics (Schrödinger equation).

Optimisation problems

Optimisation problems can be found everywhere, from finding the best path to take in order to go
to a specific location to trying to optimise an industrial process. The most generic mathematical
formulation for an optimisation problem is

x∗ = arg min
x∈X

f(x) (2.9)

with X the space of possible solutions, f a function that returns a real value (often called “cost
function”) and x∗ ∈ X the optimum value that minimises the value of f(x).

Optimisation problems are often split into two categories depending on whether the set of
possible solutions X is discrete or continuous. If X is discrete then the optimisation problem
is called a combinatorial optimisation problem or discrete optimisation problem. Else, if X is
continuous (e.g., [0, 1], R or R8), the optimisation problem is a continuous optimisation problem.

2.1.3 How are these problems solved on classical computers?

Most of the problems encountered in practical applications requires to solve an instance of one
of the mathematical problems listed in Section 2.1.2. In practice, the problem instances are too
large to be solved by manual computations and computers need to be used.

This is where scientific computing come into play and combine the compute power of classical
computers, that are able to perform an incredible number of operations per seconds, with decades
of research on algorithms and tools to implement, debug and benchmark these algorithms.

Classical computing algorithms

The first important piece that is needed to solve the problems described in Section 2.1.2 and con-
sequently help solving applications listed in Section 2.1.1 are algorithms. Each of the problems
described in Section 2.1.2 has been extensively studied, which led to a number of algorithms
being devised to solve them. The following paragraphs introduce some of these algorithms.

Partial differential equations, as shown in Section 2.1.2, are often solved by approximating
them as systems of linear equations. There are a variety of approximation methods, each with
advantages and drawbacks that should be taken into account in order to ensure that the ap-
proximation performed is valid for the problem studied. Known approximations include finite
differences, finite elements, finite volumes, multi-grid or spectral methods [22, Chapter 2]. Some
algorithms have also been devised for specific fields such as computational fluid dynamics (CFD)
that uses lattice Boltzmann methods or specific approximations for turbulent flows such as the
Reynolds-Averaged Navier-Stokes (RANS) or Large Eddy Simulation (LES) methods [23].

As one of the central piece of scientific computing, systems of linear equations have been
thoroughly studied and a plethora of algorithms exist to solve instances of this problem. The
standard numerical method to solve a generic square system of linear equations is a version of
Gaussian elimination that has been improved in order to avoid numerically unstable operations
that can occur during the algorithm. If the same system of linear equations should be solved
for several right-hand sides, it is more efficient to first perform the LU decomposition of the
system’s matrix, which costs as much as the Gaussian elimination algorithm but allows to solve

22 Chapter 2. Scientific computing and quantum computing

any subsequent systems with the same matrix much faster. Even though the method based on
LU decomposition is able to solve any square system of linear equations, more efficient methods
have been devised for special classes of systems. If the system’s matrix is symmetric and positive
definite then using a method based on Cholesky decomposition is twice as fast as using the LU
decomposition. Also, using Levinson recursion is a more efficient algorithm to solve systems
of linear equations represented by a Toeplitz matrix. Finally, for very large or sparse systems
of linear equations, iterative methods are often used to approximate to a sufficient degree of
precision the solution [22].

When considering optimisation problems, the distinction between discrete and continuous
problems is fundamental. In fact the algorithms used to solve a discrete optimisation problem
are radically different from the algorithms able to solve a continuous problem.

Continuous optimisation problems are characterised by a continuous set of possible solutions
X that is most of the time considered to be a subset of Rn. In this case, the cost function is
defined as f : X ⊆ Rn → R and can be studied using well established results from calculus.
In particular, the type of algorithm that may be used to solve the minimisation problem will
depend on the ability to compute numerically the partial derivatives of f . If none of the partial
derivatives of f can be numerically computed, the available optimisations algorithm will rely on
heuristics methods. If the gradient of f can be obtained numerically, gradient descent algorithms
or variation thereof can be used. Finally, if the Hessian (i.e., the second-order partial derivatives)
of f can be numerically computed at an acceptable computational cost, the Newton algorithm
may be used to minimise the value of f .

Discrete optimisation problems are more diverse than their continuous counterparts and do
not fit a unique model, which lead to very diverse algorithms to solve them and even often
problem-specific algorithms. This is for example largely the case on discrete problems defined
on graphs, with for example the Dijkstra or A* algorithms that are specifically built to solve the
shortest path problem and cannot solve any other problem. The simplex algorithm is another
famous algorithm, that has been specifically devised to solve linear programming problems.

Classical hardware, programming languages, libraries and compilers

The algorithms described in the previous section are theoretical constructions, very much like
recipes that explain a succession of steps that have to be executed in the correct order to solve
a specific problem.

The increasing size of numerical problems directly translates in an increase of the number
of operations that are performed by these algorithms, up to numbers of operations that are no
more realistically computable by a human. This led to the introduction of computers, machines
that are able to perform operations at an incredible speed and with a very low probability of
errors.

The ever-increasing need to solve bigger instances of the problems introduced in Section 2.1.2
pushed the computing power of computers to an incomparable level. Figure 2.1 shows the
evolution of the computing power (in FLoating-point OPerations per Seconds, often abbreviated
FLOPS or FLOP/s) of the 500 most powerful computers with publicly available benchmarks
since 1993.

The increase of computing power witnessed in the last decades came with an increase of
the computers physical and logical complexity, with the necessity to distribute computations
over several thousands processing units that might have different characteristics. Due to the
hardware complexity, a large number of tools have been devised to help performing computations
efficiently on this kind of hardware.

One of the first abstraction and tool introduced to lower down the complexity of writing
code for a specific hardware are compilers and programming languages. The introduction of
these tools allowed each programmer to implement algorithms by using a “programming lan-

2.2. Usage of quantum computing 23

Figure 2.1: Evolution of the compute power of computers in the TOP500 ranking from 1993 to 2022.
Image obtained from https: // www. top500. org/ statistics/ perfdevel/ the 13th of August 2022.

guage”, a more human-friendly way of describing computations than the machine language (or
assembly language), and to feed the code written in this programming language to a “compiler”,
that will translate the human-friendly code into machine instructions. The separation between
programming language and machine language has been a huge advance as it allows to write
computations in a machine-agnostic language and leave nearly all the machine-specific consid-
erations (translation to machine instructions, optimisation for the target hardware, . . .) to an
automated software, the compiler.

Another crucial abstraction that has been successfully used since several decades in classical
computing is called “libraries”. Libraries can be seen as a list of functions that can be re-
used by several different programs. Probably one of the most influential example is the Basic
Linear Algebra Subroutines library, often called BLAS. The BLAS library stems from an effort
made between 1970 and 1988 to implement routines performing linear algebra computations as
efficiently as possible on the existing hardware. Thanks to its organisation as a library, any
programmer was able to benefit from the optimised routines within BLAS.

Finally, a variety of tools to help developers have been gradually introduced. Examples
include debuggers, tools used to understand the behaviour of a piece of code and follow its
execution step by step to find potential bugs, profilers that are used to gather statistics on the
classical program execution and report these statistics in a readable way, and even static code
analysers that are designed to read the code in real-time and warn about any potential mistake,
even before the compilation step.

2.2 Usage of quantum computing

The fact that scientific computing can have a significant impact on the efficiency of industrial
process, might be able to save costs by optimising the allocation of some resources or even can

https://www.top500.org/statistics/perfdevel/

24 Chapter 2. Scientific computing and quantum computing

check the validity of a design before even starting producing it explains why it has attracted so
much money and research from companies and countries. Computing power is in fact considered
as a very valuable resource by many. Examples of significant amounts of money spent to build
supercomputers can be found in abundance, for example with the United States Department of
Energy that announced in 2018 that it will provide three exascale computers (i.e., capable of
performing more than 1018 FLOPS) to three national laboratories for a budget of $400 to $600
millions per computer.

But it is becoming increasingly costly and difficult to scale these super-computers to higher
compute power for several practical reasons that include the need for large amounts of energy
(nearly 30MW for the Fugaku supercomputer [24]), the complexity and power of the cooling
systems required to cool these supercomputers, the increasing communication costs between
CPUs, etc. Moreover, most of the classical algorithms described in Section 2.1.3 requires re-
sources that scale at best polynomially with the size of the inputs (e.g., the size of the linear
system, the required precision for the discretisation of the PDE or the number of unknowns
of the optimisation problem). This means that scaling to larger problem sizes will eventually
become prohibitive in terms of cost and building even more powerful supercomputers will not
be profitable anymore.

The field of quantum computing comes as a potential way of matching the demand for an
increasing computing power and continue to scale up the size of the problems we would like to
numerically solve. The following sections present some of the quantum algorithms that might
be used to solve the mathematical problems discussed in Section 2.1.2.

2.2.1 Hamiltonian simulation

From all the partial differential equations that exist, the Schrödinger equation (presented in
Equation (1.10)) holds a very special place in the field of quantum computing. As noted in
Postulate 2, the Schrödinger equation governs how an isolated quantum system evolves over time.
Due to the fact that quantum computers are considered to be a closed quantum system, they
can be seen as machines that are only able to perform one specific task: solve the Schrödinger
equation for a given Hamiltonian H and time t.

The special place held by this equation in quantum computing led to a large variety of algo-
rithms aiming at solving the “Hamiltonian simulation” problem that is formalised in Problem 1
and that roughly consists in finding a way to evolve the quantum state represented by qubits
according to a given Hamiltonian H for a time t.

Problem 1 (Hamiltonian simulation). From a given Hamiltonian H, precision ε, evolution time
t and gate set S, construct a quantum circuit C only containing gates from S and that implement
a unitary U such that ∣∣∣∣∣∣U − e−iHt∣∣∣∣∣∣ 6 ε (2.10)

where || · || is the spectral norm.

Most of the algorithms devised to solve the Hamiltonian simulation problem only consider a
restricted version of Problem 1. A typical restriction imposed in a majority of algorithms is to
consider the Hamiltonian matrix H to be s-sparse (see Definition 5).

Definition 5 (s-sparse matrix). A s-sparse matrix with s ∈ N∗ is a matrix that has at most s
non-zero entries per row and per column

Definition 6 (sparse matrix). A sparse matrix is a s-sparse matrix with s ∈ O (log(N)), N
being the size of the matrix.

One of the first algorithm devised to solve the s-sparse Hamiltonian simulation problem has
been introduced in [25] and use a method known as Trotterisation that consists in splitting the

2.2. Usage of quantum computing 25

Hamiltonian H into a sum of simpler Hamiltonians and building the target evolution e−iHt from
the evolutions of the simpler Hamiltonians constructed

{
e−iHjt

′
}

16j6m
. Algorithms based on

Trotterisation are explained in more details later in this manuscript, in Section 3.2.2.
The idea of using Trotterisation to solve the s-sparse Hamiltonian simulation problem has

inspired several other algorithms. In [26], Childs and Kothari improve the automatic decompo-
sition procedure devised in [25] in order to lower down the asymptotic complexity of the overall
algorithm when a suitable decomposition of H is not known in advance. The order in which
the Hamiltonian evolutions of each Hj are recomposed is also studied extensively in [27] where
the authors use a divide and conquer approach to build groups of Hj matrices with similar
norms and optimise the simulation within each group. Childs, Ostrander, and Su studied the
possibility to randomise the order in which the evolutions are recomposed in [28] and shows
that introducing randomness improves the expected asymptotic cost (or equivalently improve
the expected precision obtained for a given cost) at the cost of having a probabilistic approach.

A central limitation on the asymptotic complexity of generic s-sparse Hamiltonian simulation
algorithm states that no such algorithm can have a sub-linear asymptotic complexity in time.
This result is obtained in [25, Theorem 3] and shows that any generic s-sparse Hamiltonian
simulation algorithm valid for any time t can at best scale linearly in t (i.e., O (t)). Algorithms
based on Trotterisation are able to achieve a scaling in O

(
t1+ 1

2k

)
for any k ∈ N∗ at the cost

of a multiplicative constant scaling exponentially with k in front of the asymptotic complexity.
Additionally to the super-linear scaling with respect to t, algorithms based on Trotterisation all
suffer from the theoretical complexity to devise tight generic bounds to ensure a given precision
ε. The fact that the known bounds are loose has been shown in [29] where the authors compare
the costs obtained with the analytical bounds available and the optimal cost found empirically.

The first algorithm to break the super-linear time scaling barrier is presented in [30]. It
succeeded in lowering down the superlinear scaling in O

(
t1+ 1

2k

)
of the methods based on Trot-

terisation to a linear scaling O (t) by using quantum walks.
A few years later, Berry et al. introduce in [31] a new algorithm that improves the asymptotic

complexity of solving the Hamiltonian simulation problem with respect to the desired precision
ε, changing the previously linear scaling in O

(
1
ε

)
into a sub-logarithmic scaling O

(
log(1/ε)

log log(1/ε)

)
.

The exact same set of authors re-iterated by devising another algorithm, presented in [32], that
achieve the same scaling with respect to 1

ε but this time with a method based on truncated
Taylor series. Another method introduced by Berry, Childs, and Kothari in [33] obtain again
the same asymptotic complexity, this time by using an algorithm based on linear combinations
of quantum walks. Along with the method, the authors also prove that the optimal asymptotic
complexity of simulating a generic s-sparse Hamiltonian for a time t and with a precision ε
cannot be greater than

O

s||H||maxt+
log

(
1
ε

)
log log

(
1
ε

)
 . (2.11)

This optimal lower bound is reached by an algorithm presented in [34] and based on a new
technique called “quantum signal processing”. This optimal asymptotic complexity bounds was
also obtained by another quantum algorithm based on Qubitization and introduced by the same
authors in [35].

2.2.2 Systems of linear equations

As discussed in Section 2.1.2, the problem of solving a given system of linear equations is a
central piece of scientific computing and as such it attracted a lot of interest from quantum
algorithms researchers.

26 Chapter 2. Scientific computing and quantum computing

The first quantum algorithm to show an improvement over classical algorithms is the now fa-
mously known HHL (from the name of its authors Harrow, Hassidim, and Lloyd) algorithm [13].
By using Hamiltonian simulation (see Section 2.2.1), quantum phase estimation and amplitude
amplification, the HHL algorithm is able to solve a sparse square system of N linear equations
with N unknowns in a number of operations that scales as O

(
s2κ2 log (N) /ε

)
where κ is the

condition number of the linear system matrix, s is the maximum number of non-zero elements
on each column and ε is the desired precision.

The asymptotic complexity of the HHL algorithm brought hope that quantum computing
might be a good candidate to continue scaling the problem sizes up as the number of resources
needed to solve a given linear system with the HHL algorithm grows logarithmically with its size.
This means that, in order to solve a system of linear equations with twice as many equations
and unknowns, only a constant number of additional quantum resources have to be available.

Even-though the HHL algorithm showed that it was theoretically possible to solve sparse
square systems of linear equations in a number of operations that scales logarithmically with
the number of equations, the quadratic dependence on the condition number κ is less than ideal
knowing that classical algorithms based on the conjugate gradient method scale linearly with
respect to κ. Ambainis improved the asymptotic scaling with respect to the condition number κ
at the cost of an increased dependence on the desired precision ε with an algorithm using variable-
time amplitude amplification that has an asymptotic complexity of O

(
κ log3(κ/ε)

ε3 log2
(

1
ε2

))
[36].

An improvement to the original HHL algorithm has then been introduced by [37] in which the
matrix representing the system of linear equations is preconditioned to lower down its condition
number. The quantum algorithm introduced is able to find a good preconditioning matrix M
and solve the preconditioned system of linear equations (MA)x = Mb with an asymptotic
complexity of

O
(
d7κ log (N) /ε2

)
(2.12)

where d is the number of nonzero elements per row of a specific least-square problem introduced
in [37, Eq. (11)]. Alongside the dependence on the condition number of the matrix κ, the authors
Clader, Jacobs, and Sprouse also raise another few potential problems of the HHL algorithm
that might reduce its usability on some linear systems, such as the need to be able to prepare
the right-hand side |b〉 into a quantum register and the limitations imposed by the fact that the
solution is stored in the amplitudes of a quantum state, which limits the way the solution can
be read.

These two limitations, that are fundamental to quantum computing, along with the limitation
imposed by the linear scaling of the HHL algorithm with respect to κ and the limited set of
matrices that can be efficiently used within the framework of the HHL algorithm are succinctly
and nicely summarised by Aaronson in [38].

Subsequent works successfully improved the runtime of the HHL algorithm, first by improving
the asymptotic scaling with respect to the desired precision ε from O

(
ε−1) to O (poly log

(
ε−1))

using an approach known as Linear Combination of Unitary originally introduced in Hamiltonian
simulation algorithms [39]. A new algorithm suitable for dense systems of linear equations has
then been devised in [40] by using a quantum singular value estimation subroutine introduced
by Kerenidis and Prakash in [41]. A few other quantum algorithms to solve systems of linear
equations have been introduced in the recent years [42–45] without significant advances in terms
of asymptotic complexity.

Finally, several variational quantum algorithms have been devised to solve systems of linear
equations [46–48]. These algorithms rely on classical optimisers to minimise a cost function
whose global minimum represent the solution to the system of linear equations encoded. Their
theoretical scaling has not been found yet as it is highly dependent on the cost function properties
and the optimisation algorithm used.

2.2. Usage of quantum computing 27

Figure 2.2: Most common steps followed to solve a given PDE by using a quantum algorithm. Image
obtained from [49].

2.2.3 Partial differential equation solvers

Most quantum algorithms devised to solve partial differential equations start by discretising
the solution space and then follow one of two paths: either they find a way to reformulate
the PDE into a Schrödinger equation and then use a Hamiltonian simulation algorithm to
solve the resulting rephrased problem or they solve the system of linear equations obtained
after discretising the PDE by using the HHL algorithm or an improvement thereof. These two
different paths are well illustrated in Figure 2.2.

One of the first quantum algorithm devised to solve differential equations has been introduced
by Leyton and Osborne in [50] and uses the first method that consists in rephrasing the problem
as an instance of the Schrödinger equation. It is able to solve systems of n non-linear ordinary
differential equations (ODE), a specialisation of PDE where the unknown function has only 1
input variable, using a number of operations that scale polylogarithmically with the number of
equations O (poly logn) at the cost of an exponential dependence on the input variable of the n
unknown functions.

The exponential scaling with the input variable of [50] is not acceptable for practical appli-
cations and [51] improves this to a quadratic scaling for first-order linear differential equations
of the form

d

dt
x(t) = A(t)x(t) + b(t) (2.13)

where x and b are functions returning a N -component vectors and A(t) is a sparse N × N
matrix. The algorithm works by discretising the first-order linear differential equation by using

28 Chapter 2. Scientific computing and quantum computing

a multi-step approach in order to reformulate the problem as a system of linear equations, solved
by the HHL algorithm.

Another quantum algorithm able to solve generic partial differential equations is due to Berry
et al. in [52]. The algorithm is able to reach a polylogarithmic scaling with respect to 1

ε by
applying the linear combination of unitaries (LCU) algorithm to solve a linear system constructed
from a truncated Taylor serie obtained by writing down the analytic solution to Equation (2.13)
when A and b are time independent.

Additionally, several quantum algorithms have been devised to solve particular types of
partial differential equations. These include the Poisson equation [53–55], the wave equation [56]
(studied in details in Chapter 3), equations from plasma physics [57, 58], the Navier-Stokes
equation [59, 60] or even the Black-Scholes equation [61].

Quantum algorithms based on the finite element [62] or spectral [63] methods have also been
devised. They that use well known classical schemes to reformulate the problem as a system of
linear equations that can be then solved using an efficient version of the HHL algorithm.

Finally, as for systems of linear equations, variational algorithms to solve partial differential
equations have been introduced in [64, 65].

2.2.4 Quantum algorithms for optimisation

As noted in Section 2.1.2, optimisation problem can be split into two categories depending on
whether they are discrete or continuous. It turns out that most of the literature about quantum
algorithms to solve optimisation problem is interested in discrete (or combinatorial) optimisation
problems.

A first notable class of problem that has been studied and for which quantum algorithms
exist is semi-definite programming (SDP). Semi-definite programming optimisation problems
can be written as

min
x1,...,xn∈Rn

∑
(i,j)∈[[1,n]]

ci,j
〈
xi, xj

〉
subject to

∑
(i,j)∈[[1,n]]

ai,j,k
〈
xi, xj

〉
6 bk, for all 1 6 k 6 m

(2.14)

where ci,j , ai,j,k and bk are all real numbers and 〈·, ·〉 is the scalar product.
The first quantum algorithm solving semi-definite programming problems and showing a

polynomial speed-up over its classical counterparts has been presented in [66]. In this pa-
per, Brandao and Svore used ideas from a classical algorithm along with the amplitude ampli-
fication quantum algorithm to obtain a quadratic asymptotic improvement in the preparation
of Gibbs states on a quantum computer, which led to a quantum method quadratically faster
than the classical version. New quantum algorithms, also inspired by classical optimisation
algorithms, have been introduced in the following years, improving the asymptotic complex-
ity [67–70]. New algorithms based on interior point methods have also been introduced in [71,
72], achieving the best asymptotic complexity to date.

Quadratic unconstrained binary optimisation (QUBO) problems are natively solved by quan-
tum annealers, quantum computers following a relaxed version of the adiabatic quantum com-
puting model of computation presented in Section 1.2.1. A QUBO problem consists in solving

x∗ = arg min
x∈{0,1}n

n∑
i=1

n∑
j=1

qijxixj (2.15)

with qij ∈ R for 1 6 i 6 j 6 n. Many problems from combinatorial optimisation have been
reformulated in the QUBO formalism as shown in [73] for several NP-complete problems and
in [74] for industrial problems.

Part II

Algorithm implementation

29

Chapter

3
PDE solver

This chapter focuses on an implementation of a particular “monolithic” quantum algorithm
that solves a partial differential equation. This chapter, that originates from [75], explains
in great details the implementation from scratch of a partial differential equation solver on a
quantum computer. This implementation has been the first step in defining what would be the
requirements and the challenges to define and implement a QBLAS library.

Contents
3.1 Problem considered . 31

3.1.1 Type of problems . 31
3.1.2 Choice of the PDE . 32

3.2 Implementation . 33
3.2.1 Sparse Hamiltonian simulation algorithm 34
3.2.2 Product-formula implementation details 34
3.2.3 Quantum wave equation solver . 37
3.2.4 Hermitian matrix construction and decomposition 37
3.2.5 Oracle construction . 40

3.3 Results . 50
3.3.1 Hamiltonian simulation . 51
3.3.2 Wave equation solver . 52
3.3.3 Gate count analysis . 56

3.4 Additional work . 58
3.4.1 Implementation of higher-order Laplacians 58
3.4.2 Optimisation of the implementation . 62

3.5 Discussion . 63
3.6 Supplementary material . 64

3.1 Problem considered

3.1.1 Type of problems

In order to be able to understand the needs for re-usable routine definitions and highly optimised
implementations of such routines, we decided to implement a non-trivial quantum algorithm
from scratch, with the frameworks and tools provided. Several problems of interest attracted
our attention during the initial study of the existing algorithms.

First we considered the ubiquitous problem of solving (sparse) linear systems. This is a
particularly appealing problem for our goal as it is omnipresent in the field of scientific computing
and might require linear algebra subroutines that are especially interesting. Finally, the HHL
algorithm, named after its inventors Harrow, Hassidim, and Lloyd and introduced in [13], claims

32 Chapter 3. PDE solver

to solve efficiently this problem on a quantum computer and enters in the category of “complex”
algorithms, i.e., algorithms that are estimated to be non-trivial to implement in practice.

Another highly appealing class of problem that is encountered massively in a large number of
different fields is partial differential equations. We ended up studying this class of problem rather
than the quantum linear system solver for several reasons. First, an initial literature review
showed that the already existing algorithms to implement a quantum solver for partial differen-
tial equations was more diversified, with several published and peer-reviewed algorithms [25, 50,
51, 53, 76]. Secondly, one of our auxiliary goals was to explore partial different equation solvers
for quantum computers, which could have been done with a linear system solver by using dis-
cretisation schemes but was less straightforward than directly implementing a partial differential
equation solver. Finally, a very detailed study of a linear system solver has already been done
previously [77], which was not the case for a partial differential equation solver, Hamiltonian
simulation excluded [78].

3.1.2 Choice of the PDE

Now that the problem of interest has been established, we still have to decide which partial
differential equation we will solve. One of the main criteria to chose a partial differential equation
over another in this context is its simplicity: the simpler the partial differential equation is, the
more straightforward it will be to implement a solver. This work being the first implementation
from scratch of a partial differential equation solver using quantum technologies, we wanted to
start as simple as possible.

The need to have a “simple” partial differential equation already rules out a few very in-
teresting candidates such as the Navier-Stokes or Black-Scholes equations. The “go-to” partial
differential equation when dealing with quantum computers is the Schödinger equation. As
explained in Section 1.3.2, any closed quantum system is supposed to evolve according to Equa-
tion (1.10). As such, even though the Schödinger equation is considered as complex in classical
computing, it is one of the most suited for a quantum computer. The problem of solving the
Schrödinger equation is called Hamiltonian simulation and has been presented in Section 2.2.1
and Problem 1.

There exists a plethora of quantum algorithms to solve the Hamiltonian simulation prob-
lem [25, 30, 32, 34, 79–88] as discussed in Section 2.2.1. Each algorithm has its advantages and
drawbacks, some of them being theoretically non-optimal but easier to implement in practice
while others achieve an optimal asymptotic complexity but require a major amount of work
to implement. A complete study on different implementations of Hamiltonian simulation al-
gorithms was already published in [78] and the boundary and initial conditions that can be
meaningfully used with the Schrödinger equation are quite different from those found in other
partial differential equations.

For this reason, we considered a more “standard” partial differential equation: a simplified
version of the wave equation on the 1-dimensional line [0, 1] where the propagation speed c is
constant and equal to 1. This equation can be written as

∂2

∂t2
φ(x, t) = ∂2

∂x2φ(x, t). (3.1)

Moreover, we only considered solving Equation (3.1) with the Dirichlet boundary conditions

∂

∂x
φ(0, t) = ∂

∂x
φ(1, t) = 0. (3.2)

No assumption is made on initial speed φ(x, 0) and initial velocity ∂φ
∂t (x, 0), even though in

practice they will need to be “efficiently preparable” in a quantum state (see Definition 7) in
order to hope having any kind of quantum speed-up.

3.2. Implementation 33

Definition 7 (Efficiently preparable quantum state). A n-qubit quantum state |ψ〉 is said to
be “efficiently preparable” is there exist a quantum circuit C implementing a unitary UC such
that

1. UC |0〉 = |ψ〉, i.e., the quantum circuit C prepares |ψ〉.

2. The number of quantum gates needed to implement C is in O (poly (n)).

3. The number of ancilla qubits needed to implement C is in O (poly (n)).

The resolution of this simplified wave equation on a quantum computer is an appealing
problem for the first implementation of a PDE solver for several reasons. First, the wave
equation is a well-known and intensively studied problem for which a lot of theoretical results
have been verified. Secondly, the difficulty in solving the wave equation seems well balanced
and checks our requirements of being simple while not being trivially solvable. Finally, the
theoretical implementation of a quantum wave equation solver has already been studied in [56].

In this chapter, we present the complete implementation of a 1-dimensional wave equation
solver using quantum technologies based on qat library. To the best of our knowledge, this
work was the first to consider the implementation of an entire PDE solver that can run on a
quantum computer. Specifically, we explain all the implementation details of the solver from the
mathematical theory to the actual quantum circuit used. The characteristics of the solver are
then discussed and analysed, such as the estimated gate count and estimated execution time on
real quantum hardware. We show that the implementation follows the theoretical asymptotic
behaviours devised in [56]. Moreover, the wave equation solver algorithm relies critically on an
efficient implementation of a Hamiltonian simulation algorithm, which we have also implemented
and analysed thoroughly.

3.2 Implementation
The algorithm used to solve the wave equation is explained in [56] and uses a Hamiltonian
simulation procedure. Costa, Jordan, and Ostrander chose the Hamiltonian simulation algorithm
described in [33] for its nearly optimal theoretical asymptotic behaviour. But even-though
nearly optimal in theory, this algorithm is very complex to implement in practice, which might
translate to high constants hidden in the big-O notation. For this reason, we privileged instead
the Hamiltonian simulation procedure explained in [25, 79] for its very good experimental results
based on [78] and its simpler implementation (detailed in Section 3.2.2).

The code has been written using qat, a Python library shipped with the Quantum Learning
Machine (QLM), a package developed and maintained by Atos. It has not been extensively
optimised yet, which means that there is still a large room for possible improvements.

All the circuits used in this paper have been generated with a subset of qat’s gate set:

{H,X,Ry (θ) , Ph (θ) , CPh (θ) , CNOT,CCNOT} (3.3)

with H and X as defined in Equations (1.11) and (1.12), Ry (θ) = e−iθY , Ph (θ) = eiθe−iZθ,
and gates with the prefix C being controlled versions of the gate after the prefix. The quantum
circuits have then been translated to a realistic hardware gate set to study their scaling in the
most realistic setting possible by using the qat library, to the gate set

{U1 (λ) , U2 (λ, φ) , U3 (λ, φ, θ) , CNOT} (3.4)

for U1, U2 and U3 defined in Equation (7) of [89] as follow:

U(λ, φ, θ) =

 cos
(
θ
2

)
−eiλ sin

(
θ
2

)
eiφ sin

(
θ
2

)
ei(λ+φ) cos

(
θ
2

)
,

 (3.5)

34 Chapter 3. PDE solver

U3(λ, φ, θ) = U(λ, φ, θ), (3.6)

U2(λ, φ) = U

(
π

2 , λ, φ
)
, (3.7)

U1(λ) = U(0, 0, λ). (3.8)

The gate set presented in Equation (3.4) has been used extensively by IBM to represent the
native gate set of their quantum chips. It does not correspond to the native gate set anymore.
The native gate set implemented by IBM hardware has been explained in [89]. The choice
of using the gate set from Equation (3.4) is justified by the fact that, when the research was
performed, IBM only provided hardware characteristics such as gate times for the gate set of
Equation (3.4) and not for the real hardware gate set.

This implementation aims at validating in practice the theoretical asymptotic complexities of
Hamiltonian simulation algorithms and providing a proof-of-concept showing that it is possible
to solve a partial differential equation on a quantum computer. We also study extensively the
resource requirements of the wave equation solver implementation in a setup that is as close as
possible to current quantum hardware.

We start by presenting the Hamiltonian simulation algorithm used in the implementation
in Sections 3.2.1 and 3.2.2. We then explain how Equation (3.1) is solved in Section 3.2.3
and detail the simulated Hamiltonian along with the implementation of the required oracles in
Sections 3.2.4 and 3.2.5.

3.2.1 Sparse Hamiltonian simulation algorithm

In the past years, a lot of algorithms have been devised to simulate the effect of a Hamiltonian on
a quantum state [25, 30–34, 39, 80, 81, 85–87]. Among all these algorithms, only few have already
been implemented for specific cases [90, 91] but to the best of our knowledge no implementation
is currently capable of simulating a generic sparse Hamiltonian.

The domain of application of the already existing methods being too narrow, we decided
to implement our own generic sparse Hamiltonian simulation procedure. We based our work
on the product-formula approach described in [25, 79]. One advantage of this approach is
that product-formula based algorithms have already been thoroughly analysed both theoreti-
cally [25, 79] and practically [77, 78], and several implementations are publicly available, though
restricted to Hamiltonians that can be decomposed as a sum of tensor products of Pauli matri-
ces. Moreover, [79] provides a lot of implementation details that allowed us to go straight to the
development step.

Our implementation is capable of simulating an arbitrary sparse Hamiltonian provided that
it has already been decomposed into a sum of 1-sparse hermitian matrices with either only real
or only complex entries, each described by an oracle. The implementation has been validated
with several automated tests and a more complex case involving the simulation of a 2-sparse
Hamiltonian and described in Section 3.2.3. Furthermore, it agrees perfectly with the theoretical
complexities devised in [25, 79] as studied and verified in Section 3.3.

3.2.2 Product-formula implementation details

Hamiltonian simulation

Hamiltonian simulation is the problem of constructing a quantum circuit that will evolve a
quantum state according to a Hamiltonian matrix, following the Schrödinger equation, as shown
in Problem 1. The s-sparse Hamiltonian simulation problem is a specialisation of Problem 1
when the Hamiltonian H is s-sparse as defined in Definition 5.

3.2. Implementation 35

Several quantum algorithms have been developed in the last few years to solve the problem
of s-sparse Hamiltonian simulation [25, 30–34, 39, 80, 81, 85–87]. Among these algorithms
we decided to implement the product-formula approach [25, 79], for the reasons presented in
Section 3.2.1.

The product formula algorithm has three main steps: decompose, simulate, recompose. It
works by first decomposing the s-sparse Hamiltonian matrix H that should be simulated as a
sum of hermitian matrices Hj that are considered easy to simulate

H =
m−1∑
j=0

Hj . (3.9)

The second step is then to simulate each Hj separately, i.e. to create quantum circuits imple-
menting e−iHjt for all the Hj in the decomposition in Equation (3.9). The last step uses the
simulations computed in step two to approximate e−iHt.

The very first questions that should be answered before starting any implementation of
the product-formula algorithm are “What is an easy to simulate matrix?” and “What kind of
hermitian matrices are easy to simulate?”.

Easy to simulate matrices

One of the most desirable properties for an “easy to simulate” matrix is the possibility to simulate
it exactly, i.e. to construct a quantum circuit that will perfectly implement e−iHt. This property
becomes a requirement when one wants rigorous bounds on the error of the final simulation.
Another enviable property of these matrices is that they can be simulated with a low gate
number and only a few calls to the matrix oracle.
Definition 8 (Easy to simulate matrix). A hermitian matrix H can be qualified as “easy to
simulate” if there exist an algorithm that takes as input a time t and the matrix H and outputs
a quantum circuit C(H)t such that

1. The quantum circuit C(H)t implements exactly the unitary transformation e−iHt, i.e.∣∣∣∣∣∣e−iHt − C(H)t
∣∣∣∣∣∣ = 0.

2. The algorithm only needs O (1) calls to the oracle of H and O (logN) additional gates, N
being the dimension of the matrix H.

With this definition of an “easy to simulate” matrix, we can now search for matrices or group
of matrices that satisfy this definition.

Multiples of the identity The first and easiest matrices that fulfil the easy to simulate
matrix requirements are the multiples of the identity matrix {αI, α ∈ R} with I the identity
matrix. The quantum circuit to simulate this class of matrices can be found in [92].

Integer-weighted, 1-sparse, hermitian matrices A larger class of matrices that can be ef-
ficiently and exactly simulated are the 1-sparse, integer weighted, hermitian matrices. Quantum
circuits simulating exactly 1-sparse matrices with integer weights can be found in [79].
Note 2. Procedures simulating 1-sparse matrices with real (non-integers) weights are also de-
scribed in the paper, but these matrices do not fall in the “easy to simulate” category because
the procedures explained are exact only if all the matrix weights can be represented exactly with
a fixed-point representation, which is not always verified.
Note 3. Multiples of identity matrices presented in Section 3.2.2 are a special case of 1-sparse
matrices. The two classes have been separated because more efficient quantum circuits exists
for αI matrices and these algorithms are exact for any coefficient α ∈ R.

36 Chapter 3. PDE solver

Decomposition of H

Once the set of “easy to simulate” matrices has been established, the next step of the algorithm
is to decompose the s-sparse matrix H as a sum of matrices in this set.

There are two possible ways of performing this decomposition, each one with its advantages
and drawbacks: applying a procedure computing the decomposition automatically, or decompose
the matrix H beforehand and provide the decomposition to the algorithm.

The first solution, which is to automatically construct the oracles of the Hj matrices from the
oracle of theH matrix has been studied in [79] and [81]. Thanks to this automatic decomposition
procedure, we only need to implement one oracle. This simplicity comes at the cost of a higher
gate count: each call to the automatically constructed oracles of the matrices Hj will require
several calls to the oracle of H along with additional gates.

On the other hand, the second solution offers more control at the cost of less abstraction and
more work. The decomposition of H is not automatically computed and should be performed
beforehand. Once the matrix H has been decomposed as in Equation (3.9), the oracles for
the matrices Hj should be implemented. This means that we should now implement m oracles
instead of only 1 for the first solution. The main advantage of this method over the one using
automatic-decomposition is that it gives us more control, a control that can be used to optimise
even more the decomposition of Equation (3.9) (less Hj in the decomposition, Hj matrices that
can be simulated more efficiently, . . .).

All the advantages and drawbacks weighted, we chose to implement the second option for
several reasons. First, the implementation of the automatic decomposition procedure adds
a non-negligible implementation complexity to the whole Hamiltonian simulation procedure.
Moreover, the automatic decomposition procedure can be implemented afterwards and plugged
effortlessly to the non-automatic implementation. Finally, our use-case only required to simulate
a 2-sparse Hamiltonian that can be decomposed as the sum of two 1-sparse, easy to simulate,
hermitian matrices, which makes the manual decomposition step manageable.

Simulation of the Hj

Once the matrixH has been decomposed following Equation (3.9) with eachHj being an “easy to
simulate” matrix, the simulation of Hj becomes a straightforward application of the procedures
described in Section 3.2.2.

After this step, we have access to quantum circuits implementing e−iHjt for j ∈ [0,m− 1]
and t ∈ R.

Re-composition of the e−iHjt

The ultimate step of the algorithm is to approximate the desired evolution e−iHt with the
evolutions e−iHjt. In the special case of mutually commuting Hj , this step is trivial as it
boils down to use the properties of the exponential function on matrices and write eiHt =
e
i
∑

j
Hjt =

∏
j e

iHjt. But in the more realistic case where the matrices Hj do not commute, a
more sophisticated method should be used to approximate the evolution e−iHt. To this end, we
used the first-order Lie-Trotter-Suzuki product formula defined in Definition 9.

Definition 9 (Lie-Trotter-Suzuki product formula [78, 93, 94]). The Lie-Trotter-Suzuki product
formula approximates

exp

λm−1∑
j=0

αjHj

 (3.10)

with

S2(λ) =
m−1∏
j=0

eαjHjλ/2
0∏

j=m−1
eαjHjλ/2 (3.11)

3.2. Implementation 37

0 1 2 Nd − 3 Nd − 2 Nd − 1

δx δx δx δx

Figure 3.1: Graph Gδx built from the discretisation of the 1-dimensional line [0, 1] with Nd discretisation
points (i.e. δx = 1

Nd−1).

and can be generalised recursively to higher-orders

S2k (λ) = [S2k−2 (pkλ)]2 × S2k−1 ((1− 4pk)λ)× [S2k−2 (pkλ)]2 (3.12)

with pk =
(
4− 41/(2k−1)

)−1
for k > 1. Using this formula, we have the approximation

eλH =
[
S2k

(
λ

n

)]n
+O

(
|λ|2k+1

n2k

)
. (3.13)

We used the Lie-Trotter-Suzuki product formula with λ = −it to approximate the operator
e−iHt up to an error of ε ∈ O

(
t2k+1

n2k

)
.

3.2.3 Quantum wave equation solver

Using the Hamiltonian simulation algorithm implementation, we successfully implemented a
1-dimensional wave equation solver using the algorithm described in [56] and explained in Sec-
tions 3.2.4 and 3.2.5.

For the specific case considered (Equations (3.1) and (3.2)), solving the wave equation for
a time T on a quantum computer boils down to simulating a 2-sparse Hamiltonian for a time
f(T), the function f being thoroughly described in [56] and Equation (3.55). The constructed
quantum circuit can then be applied to a quantum state representing the initial position ψ(x, 0)
and velocity ∂φ

∂t (x, 0), and will evolve this state towards a quantum state representing the final
position φ(x, T) and velocity ∂φ

∂t (x, T).
As for the Hamiltonian simulation procedure, the practical results we obtain from the im-

plementation of the quantum wave equation solver seems to match the theoretical asymptotic
complexities. See Section 3.3 for an analysis of the theoretical asymptotic complexities.

3.2.4 Hermitian matrix construction and decomposition

One of the main challenge in implementing a quantum wave equation solver lies in the con-
struction and implementation of the needed oracles. This section describes the first step of the
implementation process: the construction and decomposition of the Hamiltonian matrix that
will be simulated using the Hamiltonian simulation procedure introduced in Section 3.2.2.

This section follows the analysis performed in [56] and adds details and observations that
will be refereed to in Section 3.2.5 when dealing with the actual oracle implementation.

Hamiltonian matrix description

In order to devise the Hamiltonian matrix that should be simulated to solve the wave equation,
the first step is to discretise Equation (3.1) with respect to space. Such a discretisation can be
seen as a graph Gδx whose vertices are the discretisation points and with edges between nearest
neighbour vertices. The graph Gδx is depicted in Figure 3.1.

The graph Laplacian of Gδx, defined as

L(Gδx)i,j :=


deg(vi) if i = j

−1 if (i 6= j) ∧ (vi adjacent to vj)
0 otherwise

(3.14)

38 Chapter 3. PDE solver

can then be used to approximate the differential operator ∂2

∂x2 . By using the discretisation
approximation

∂2φ

∂x2 (iδx, t) ≈ φi−1,t − 2φi,t + φi+1,t

δx2 (3.15)

with φi,t = φ(iδx, t), and approximating φ(x, t) with a vector φ = [φi,t]06i<Nd
, the matrix

A = − 1
δx2L(Gδx) (3.16)

approximates the second derivative of φ when δx→ 0 as

[Aφ]i = φi−1,t − 2φi,t + φi+1,t

δx2 ≈ ∂2φ

∂x2 (iδx, t). (3.17)

The approximation in Equation (3.16) is then used in Equation (3.1) to approximate the
spatial derivative operator

∂2

∂t2
φ = − 1

δx2L(Gδx)φ. (3.18)

Based on this formula, [56] shows that simulating

H = 1
δx

(
0 B
B† 0

)
(3.19)

with
BB† = L(Gδx) (3.20)

constructs a quantum circuit that will evolve a part of the quantum state it is applied on
according to the discretised wave equation in Equation (3.18).

A matrix B satisfying Equation (3.20) can be obtained directly from the graph Gδx repre-
senting the discretisation. The algorithm to construct the matrix B can be decomposed in three
steps. First, the vertices (discretisation points) should be arbitrarily ordered by assigning them
a unique index in [0, Nd − 1]. Then, each edge of the graph is arbitrarily oriented and indexed
with indices in [0, Nd − 2]. Finally, B is computed with the following definition

Bij =


1 if edge j is a self-loop of vertex i,
1 if edge j has vertex i as source,
−1 if edge j has vertex i as sink,
0 otherwise

. (3.21)

Note that edges’ orientation and vertices/edges ordering is completely arbitrary. Changing
either the edges orientation on one of the orderings will change the matrix B but will not affect
BB† which should be equal to L(Gδx). This freedom in the ordering and orientation choices takes
a crucial importance in the oracle implementation as it allows us to pick the ordering/orientation
that will produce an easy-to-implement matrix B.

Dirichlet boundary conditions

Fixing boundary conditions is a requirement for most of the partial differential equations to
admit a unique well-defined solution. There exist several boundary conditions such as Neu-
mann, Dirichlet, Robin or Cauchy ones. For simplicity, we restricted ourselves to the study of
Equation (3.1) with Dirichlet boundary condition of Equation (3.2).

In the case of Dirichlet boundary conditions on the 1-dimensional line [0, 1], the two boundary
nodes at x = 0 and x = 1 can be ignored as their value is always equal to 0. Moreover, [56]
shows that the graph GDδx representing the discretisation with Dirichlet boundary conditions of
Equation (3.2) is simply Gδx with self-loops on the two outer nodes (i.e. the ones indexed 1 and
Nd − 2 as 0 and Nd − 1 are ignored). GDδx is depicted in Figure 3.2. The algorithm to construct
the matrix B remain the same as explained in Section 3.2.4.

3.2. Implementation 39

0 1 2 Nc − 3 Nc − 2 Nc − 1

0
1 2 Nc − 1 Nc

Nc + 1

Figure 3.2: Graph GDδx representing the discretisation of the 1-dimensional line [0, 1] with Dirichlet
boundary conditions. The points and edges in grey are only drawn for illustration purpose and are ignored
in the analysis because the boundary condition impose a value of 0 on these vertices. Loops are added
to Gδx to encode the fact that this graph represents Dirichlet boundary conditions. Vertices (resp. edges)
are ordered with indices within [0, Nc − 1] (resp. [0, Nc + 1]). Nc is the number of considered points and
is equal to Nd − 2 (the two extreme points are ignored).

Matrices construction

All the pieces are now in place to start building the matrix Bd ∈ {−1, 0, 1}(Nc−1)×Nc . Using the
definition of the matrix B written in Equation (3.21) and the graph GDδx depicted in Figure 3.2
we end up with

Bd =


1 1 0 · · · 0

0 −1 1
... 0
0 · · · 0 −1 1

 . (3.22)

We can easily check that 1
δx2BdB

†
d is equal to the well-known discretisation matrix

1
δx2BdB

†
d = 1

δx2



2 −1 0 · · · 0

−1 2

0 0
... 2 −1
0 · · · 0 −1 2


, (3.23)

which validate the method of construction of Bd.
Computing H̃d, the Hamiltonian matrix that should be simulated to evolve the quantum

state according to the wave equation in Equation (3.1) with Dirichlet boundary conditions, is
now straightforward. Using Equation (3.19), we directly obtain

H̃d = 1
δx



0 · · · · · · 0 1 1 0 · · · 0
...

... 0 −1 1
...

...
... 0

0 · · · · · · 0 0 · · · 0 −1 1
1 0 · · · 0 0 · · · · · · · · · 0

1 −1
...

...

0 1 . . . 0
...

...
... −1

...
...

0 · · · 0 1 0 · · · · · · · · · 0



(3.24)

As explained in Section 3.2.2, the Hamiltonian simulation algorithm implemented requires
that the Hamiltonian to simulate is split as a sum of 1-sparse hermitian matrices. There are a
lot of valid decompositions for the matrix H̃d and we are free to choose the decomposition that
will simplify the most the oracle implementation or reduce the gate complexity.

40 Chapter 3. PDE solver

We made the choice to decompose Bd as two 1-sparse matrices and then reflect this decom-
position on H̃d. Let B1 and B−1 defined as

B1 =


0 1 0 · · · 0
... . . . 1
... 0
0 · · · · · · 0 1

 (3.25)

B−1 =


1 0 · · · · · · 0

0 −1
...
0 · · · 0 −1 0

 (3.26)

we have Bd = B1 +B−1. Let also

H̃1 = 1
δx

(
0 B1
B1
† 0

)
, H̃−1 = 1

δx

(
0 B−1

B−1
† 0

)
, (3.27)

it is easy to see that H̃d = H̃1 +H̃−1 and that both H̃1 and H̃−1 are 1-sparse hermitian matrices.
For convenience, we also define

H1 =
(

0 B1
B1
† 0

)
, H−1 =

(
0 B−1

B−1
† 0

)
, (3.28)

and Hd = H1 + H−1, the H̃1, H̃−1 and H̃d matrices re-scaled to contain only integer weights.
These matrices have the interesting property that simulating H̃d (resp. H̃1, H̃−1) for a time
t is equivalent to simulating Hd (resp. H1, H−1) for a time t

δx . This property will be used
in the following sections as it offers us the opportunity to simulate the “easy-to-simulate” (see
Definition 8), integer-weighted matrices Hd, H1 and H−1 instead of the real-weighted ones H̃d,
H̃1 and H̃−1 that are not within the “easy-to-simulate” category as defined in Definition 8.

Note also that a lower bound of the number of qubits needed to solve the wave equation
for Nd discretisation points can be computed from the dimensions of Hd. As the non-empty
upper-left block of matrix Hd is of dimension (2Nd − 1)× (2Nd − 1), we need at least

dlog2(2Nd − 1)e (3.29)

qubits to simulate it. This estimation does not take into account ancilla qubits that may be
needed to implement the oracles.

3.2.5 Oracle construction

Oracles can be seen as the interface between a quantum procedure and real-world data. Their
purpose is to encode classical data such that a quantum algorithm can process it efficiently.

Oracle interface

In order to work as a bridge between the classical and the quantum worlds and to be used by
the quantum algorithm, a clear interface for the oracle should be established.

We chose to use the interface described in [79, Eq. 4.4] with slight modifications improving
the arity of the oracle for our specific case of 1-sparse matrices.

More precisely, our oracles O implement the following interface

O |x0〉x |0〉m |0〉v |0〉s = |x0〉x |m(x0)〉m |v(x0)〉v |s(x0)〉s (3.30)

3.2. Implementation 41

w(x)

O
A

e −
iZ
⊗
F

m
t

A†

w(x)

O†
/n

/n

/m

|x〉x

|0〉m

|0〉a

|0〉v

/n

/n

/m

e−iHt |x〉x

|0〉m

|0〉a

|0〉v

Figure 3.3: Quantum circuit re-created from [79, p. 71] that simulates a 1-sparse integer-weighted
Hamiltonian for a given time t. O is the implementation of the oracle, A is a quantum circuit defined
in [79, p. 70]. Fm is defined as the diagonal matrix with diagonal entries increasing from 0 to 2m − 1
(see Equation (3.36)).

with |x0〉x encoding a row index as a unsigned integer, m(x) the function that returns the column
index of the only non-zero element in row x, v(x) = |w(x)| the absolute value of the weight w(x)
of the first (and only) non-zero element in row x and

s(x) =
{

0 if w(x) > 0
1 if w(x) < 0

(3.31)

the sign of the first non-zero entry in row x. The sign s(x) is purposely not defined for rows
x that do not have any non-zero entry (i.e., w(x) = 0). The specific case of empty rows is
discussed in Claim 1.

Note 4. The quantum register are labelled with their respective usage: x for the index of of
the row considered, m for the index of the column considered, v for the value of the element at
(row, index) and s for the sign of the element at (row, index). A fifth label “a” is used along the
paper to label a register used as an ancilla.

The interface of the oracle O can also be obtained with 3 separate oracles that will each take
care of computing one output:

M |x0〉x |0〉m = |x0〉x |m(x)〉m (3.32)

V |x0〉x |0〉v = |x0〉x |v(x)〉v (3.33)

S |x0〉x |0〉s = |x0〉x |s(x)〉s (3.34)

Optimisation of M and S

Claim 1. The simulation algorithms provided by [79] have the interesting property that if the
oracle V encodes a weight of zero for some inputs (i.e. v(x) = 0 for some x) then the outputs of
oracles M and S are ignored for these inputs.

Proof. The circuit simulating a 1-sparse m-bit-integer weighted Hamiltonian H depicted in
Figure 3.3 is taken from [79]. In our special case of 1-bit weights (i.e. m = 1), the third quantum

42 Chapter 3. PDE solver

gate e−iZ⊗Fmt can be written as

e−iZ⊗Fmt = e−iZ⊗F1t

= exp
[
−i
(
F1 0
0 −F1

)
t

]

=
(
e−iF1t 0

0 eiF1t

)

=


1 0 0 0
0 e−it 0 0
0 0 1 0
0 0 0 e−it

 .
(3.35)

where

Fm =



0 0 · · · · · · · · · · · · 0

0 1
... . . . 2
... . . . 3
... . . . 4
... 0
0 · · · · · · · · · · · · 0 2m − 1


. (3.36)

It follows from the matrix notation that if the second qubit e−iZ⊗F1t is applied on is in the state
|0〉, the gate e−iZ⊗F1t is the identity transformation, i.e. the unitary operation e−iZ⊗F1t sends
|00〉 (resp. |10〉) to |00〉 (resp. |10〉). This means that if the oracle O does not set the last qubit
to |1〉 (i.e. the oracle encodes a weight of 0 for the xth row of H), the quantum circuit depicted
in Figure 3.3 can be simplified up to an identity transformation as the effects of O (resp. A) are
reverted by O† (resp. A†).

Rephrasing, if the xth row of matrix H has no non-zero entries, the effects of the oracle
O is ignored, which implies that the effects of the oracles M and S that compose O are also
ignored.

Using the result of Claim 1, we are free to implement any transformation that best suits us
for the set of inputs |x〉 such that the xth row of the considered hermitian matrix (H1 or H−1)
has no non-zero elements as long as the oracle V implements the right transformation.

To illustrate clearly the implemented transformations we chose to encode with M and S, the
next sections will re-write the matrices H1 and H−1 according to Equation (3.28) but with one
0 or −0 in each empty row. A 0 entry at position (i, j) in the matrix means that the row i was
empty, the oracle M will map |i〉x to |j〉m and the oracle S will encode a positive sign, i.e. |0〉s.
The same reasoning applies for −0 entries, except that the encoded sign is now negative, i.e.
|1〉s.

The following sections will explain step by step the construction of each of the three oracles
M , V and S, both for the matrix H1 (M1, V1 and S1) and the matrix H−1 (M−1, V−1 and S−1).

About arithmetic and logic quantum gates

Implementing the oracles M , V and S for the matrices H1 and H−1 requires several arithmetic
and logic quantum gates such as or, add or compare. All these gates have been implemented
prior to the oracle implementation and the implementation steps are detailed in this section.

3.2. Implementation 43

OR

|x⟩

|y⟩

|0⟩

|x⟩

|y⟩

|x ∨ y⟩

=

X

X

X

X

X|x⟩

|y⟩

|0⟩

|x⟩

|y⟩

|x ∨ y⟩

Figure 3.4: Implementation of the or gate.

sub
y

|x0⟩

· · ·

|xn⟩

|(x− y)0⟩

· · ·

|(x− y)n⟩

=

X

X

X

add
y

X

X

X

|x0⟩

· · ·

|xn⟩

|(x− y)0⟩

· · ·

|(x− y)n⟩

Figure 3.5: Implementation of the sub gate from an add gate. The y value encoding is intentionally
omitted. The substractor will use the same encoding as the adder (i.e. either the y value is encoded on a
quantum register or it is encoded directly in the quantum circuit implementing the adder). Note that the
y value is not negated.

The or gate The or gate is easily implemented using only X and CCX (or Toffoli) gates. The
implementation used is depicted in Figure 3.4 and uses the famous Boole algebra formula linking
not, or and and: x ∨ y = ¬(¬x ∧ ¬y).

The add and sub gates Most of the research papers presenting an implementation of the
add or sub gates only consider the case where the two numbers to add or subtract are stored in
quantum registers.

In our case, the oracles implementation requires an adder and substractor that can add or
subtract to a quantum register a quantity known when the quantum circuit is generated, i.e.
not necessarily encoded on a quantum state.

Claim 2. Implementing a substractor is trivial once an adder procedure is available.

Proof. A substractor can be implemented from a generic adder by using the identity

a− b = (a′ + b)′ (3.37)

where ′ denotes the bit-wise complementation.
The circuit resulting of the application of this identity is depicted in Figure 3.5 and only

requires one call to the adder and 2n additional gates, n being the number of qubits used to
represent one of the operands.

Note 5. Following Claim 2 we will restrict the study to implementing an adder. Implementing
a substractor is trivial and cheap in term of additional quantum gates used once an adder is
available.

Definition 10. Generation-time value A generation-time value is a value that is known by the
programmer when generating the quantum circuit. Knowing a value at generation-time may
allow to optimise even further the generated quantum circuit. The closest analogue in classical
programming would be C-like macros or recent C++ constexpr expressions.

44 Chapter 3. PDE solver

QFT

1 2 3

1 2

1

QFT†

|b2⟩

|b1⟩

|b0⟩

|a2⟩

|a1⟩

|a0⟩

|b2⟩

|b1⟩

|b0⟩
∣∣((a+ b) mod 23

)
2

〉

∣∣((a+ b) mod 23
)
1

〉

∣∣((a+ b) mod 23
)
0

〉

Figure 3.6: Original Draper’s adder example for 3-qubit registers |a〉 and |b〉. The round gates between
the two applications of the Quantum Fourier Transform (QFT gates) are controlled phase gates and are
defined in [97]. Note that the adder wraps on overflow, meaning that if an overflow happens, the result
will be (a+ b) mod 23.

The easiest solution to overcome the problem caused by the non-compatible input formats
between our problem (with a generation-time value) and the existing adders (with two values
encoded on quantum registers) is to encode the quantity known at generation-time into ancillary
qubits and then use the regular adder algorithms to add to a quantum register the value encoded
in a second quantum register. Even if this solution is trivial to implement, it has the huge
downside of requiring O (log2 b) additional ancillary qubits to temporarily store the generation-
time value b.

Another answer to the problem would be to adapt a quantum adder originally devised to
add two quantum registers to a quantum adder capable of adding a constant value to a quantum
register. Several adders [95–97] have been studied to check if they can be modified to allow a
generation-time input, i.e. if it possible to remove completely the quantum register storing the
right-hand-side (or left-hand-side) of the addition.

The task of removing the quantum register storing one of the operands appears to be chal-
lenging for adders based on classical arithmetic like [95, 96] but trivial for Draper’s quantum
adder introduced in [97].

Claim 3. Draper’s quantum adder can be adapted into an efficient adder that takes as right-
hand side input a unsigned “generation-time” integer value and add this value to a sufficiently
large quantum register encoding another unsigned integer.

Proof. The original Drapper’s adder as introduced in [97] is illustrated in Figure 3.6. The only
quantum gates using the quantum register |b〉 are the controlled-phase gates. Moreover, they
only use the qubits of the right-hand-side register |b〉 as controls. In the case of a constant value
of b known at generation time, we can replace each controlled-phase gate by either a phase gate
if the corresponding bit of b is 1 or by an identity gate (or a “no-op” gate) if the bit of b is 0.
Once this transformation has been performed, the quantum register |b〉 is no longer used and
can be safely removed from the circuit.

The final quantum add gate implementation is depicted in Figure 3.7, requires O
(
n2) gates

and has a depth of O (n). Following [97–99], the asymptotic gate count can be improved to
O (n log(n)) by removing the rotation with an angle below a given threshold that depend on
hardware noise.

The cmp gate For the same reasons exposed in the adder implementation in Section 3.2.5,
the cmp gate cannot be implemented using the arithmetic comparator presented in [96] because
removing the right-hand side qubits seems to be a challenging task.

3.2. Implementation 45

QFT

1

b2

2

b1

3

b0

1

b1

2

b0

1

b0
QFT†

|a2⟩

|a1⟩

|a0⟩

∣∣((a+ b) mod 23
)
2

〉

∣∣((a+ b) mod 23
)
1

〉

∣∣((a+ b) mod 23
)
0

〉

Figure 3.7: Modified Draper’s adder example for 3-qubit register |a〉 and 3-bit classical constant b. The
round gates between the two applications of the Quantum Fourier Transform (QFT gates) are phase gates
and are defined in [97]. A label bi above a phase gate means that the phase gate should only be applied
when the ith bit of b is set to 1. Note that the adder wraps on overflow, meaning that if an overflow
happens, the result will be (a+ b) mod 23.

sub
rhs

sub†

rhs

|lhs⟩

|0⟩a

|0⟩

|lhs⟩

|0⟩a

|lhs < rhs⟩
Figure 3.8: Computation of the high-bit of lhs − rhs with a (n + 1)-qubit substractor. The second
quantum register is an ancilla qubit that is appended to the quantum register storing |lhs〉 in order to
form a (n+ 1)-qubit register. The result is stored in a third quantum register as |1〉 if lhs < rhs, else |0〉.

Instead, we use the idea from [96, Section 4.3] that explain how to implement a comparator
only by using a quantum adder. The comparison algorithm works by computing the high-bit of
the expression a− b. If this high-bit is in the state |1〉 then a < b.

In order to compute the high-bit of a− b, several options are open. The two most promising
options are described in the following paragraphs.

The first option is to use a substractor acting on n+1 qubits and behaving nicely on underflow
(i.e. underflow result in cycling to the highest-value), as illustrated in Figure 3.8. This approach
requires 2 calls to the substractor and 1 additional 2-qubit quantum gate.

Another solution would be to use Equation (3.37) to change the subtraction into an addition
and then use a specialised procedure to compute the high-bit of the addition of two numbers
a and b (a being encoded on a quantum register and b a constant). Computing the high-bit of
an addition between a quantum register and a constant can be performed with the CARRY gate
introduced in [100]. This approach requires O (n) Toffoli, CNOT and X gates.

Each of the described methods has its advantages and drawbacks.
For example, the first method crucially relies on a quantum substractor, and will have the

same properties as the substractor used. In our specific case, we use the substractor implemented
with Drapper’s adder [97] as explained in Section 3.2.5, which in turn uses the quantum Fourier
transform. The main disadvantage of using the QFT when looking at practical implementation
on quantum hardware is that the QFT involves phase gates with exponentially small angles.
These gates may be implemented correctly up to a given threshold, but very small rotation
angles will inevitably not be as precise as normal rotation angles due to the hardware limitations
in precision. This problem can be circumvented by using an approximate QFT algorithm [98,
99] that will cut all the rotation gates that have a rotation angle smaller than a given threshold
from the generated circuit but the algorithm will not be exact anymore (small probability of
incorrect result).

46 Chapter 3. PDE solver

eq
5

=
X X

Figure 3.9: Example of eq gate implementation for the compile-time value 5. X gates are applied to the
second control qubit because the only bit set to 0 in the big-endian binary representation of 5 = 1012 is at
the second (middle) position.

On the other hand, the CARRY gate involves only X, controlled-X and Toffoli gates. This
restriction makes this implementation more robust than the first one to hardware approxima-
tions. Another difference is the connectivity needed by the approaches: the first method relies
on a adder implemented with the quantum Fourier transform, which use an all-to-all connectiv-
ity whereas the CARRY gate, once the qubits correctly ordered, only contains gates on adjacent
qubits. As a side note, the exclusive use of logical gates X, controlled-X and Toffoli may al-
low us to simulate efficiently the CARRY gate on classical hardware as it only involves classical
arithmetic.

As a last word, in the future, the QFT may be implemented directly into the hardware
chips to make it more efficient because it is one of the most used quantum procedure (and so
one of the best candidate for optimisation). Taking this possibility into account seems a little
premature right now but may have a high impact on the efficiency and precision of the first
solution presented.

After summarising all the drawbacks and advantages, we decided to use the arithmetic
comparator for its linear number of gates, because it is based on arithmetic which does not
involve exponentially small rotation angles and because the need to have n − 1 dirty qubits to
lend to the procedure is not an issue in our implementation.

The eq gate The last gate the oracle implementation will need is an eq gate, testing the
equality between an integer stored in a quantum register and a generation-time constant integer.

This gate has been implemented with a multi-controlled Toffoli gate and a few X gates before
and after the control qubits of the Toffoli gates that should be equal to |0〉. The X gates are
necessary because a raw Toffoli gate set its target qubit only when all its control are in the state
|1〉, but we want each control qubit to be equal to a specific bit of the generation-time constant
integer, which can be either |0〉 or |1〉.

An implementation example is available in Figure 3.9.
Implementing a NOT gate controlled by n qubits can be done with only one ancilla qubit or

n− 2 garbage qubits and requires O (n) X, controlled-X or Toffoli gates [101].

Oracles for H1

As noted in Section 3.2.5, the oracles M1 and S1 can be optimised by using the fact that they
can encode anything for |x〉x when the xth row of H1 is empty.

We decided to use this optimisation opportunity to add regularity to the description of the
H1 matrix. The implemented matrix H1, denoted as H impl

1 , is described in Equation (3.38).

3.2. Implementation 47

cmp
Nc + 1

add
Nc + 1

X

sub
Nc + 1

X
cmp†

Nc + 1

/n

/n

/1

|x⟩x

|0⟩m

|0⟩a

/n

/n

/1

|x⟩x

|m(x)⟩m

|0⟩a
Figure 3.10: Implementation of the oracle M1. The cmp gate compare the value of the control quantum
register (interpreted as a unsigned integer) with the parameter given (written below the cmp). If the control
register is strictly lower than the parameter, the gate set the qubit it is applied on to |1〉. The add (resp.
sub) gate used in this quantum circuit add (resp. subtract) the value of its parameter to (resp. from) the
quantum register it is applied on only if the control qubit is in the state |1〉.

Note 6. All indices start at 0. The first row of a matrix has the index 0, the second row the
index 1 and so on. This convention is used to match Python’s indexing that starts at 0.

H impl
1 =

Nc︷ ︸︸ ︷ Nc+1︷ ︸︸ ︷ 2q−(2Nc+1)︷ ︸︸ ︷

N
c



N
c

+
1



2q
−

(2
N
c

+
1)





0 · · · · · · 0 0 1 0 · · · 0 0 · · · · · · · · · · · · 0
...

...
...

...
...

...
...

... 0
...

...

0 · · · · · · 0 0 · · · · · · 0 1 0
...

0 · · · · · · 0 0 · · · · · · · · · 0 0
...

1
...

... 0
...

0
...

...
...

...
... 0

...
...

...
...

0 · · · 0 1 0 · · · · · · · · · 0 0 · · · · · · · · · · · · 0
0 · · · · · · 0 0 0 · · · · · · 0 0 · · · · · · · · · · · · 0
... . . . 0

...
...

...
...

...
... . . . 0 0 0

...
... . . . 0 0
0 · 0 0 0 0 · · · · · · 0



(3.38)

According to the shape of the matrix in Equation (3.38), the oracle M1 should implement
the transformation

M1|x〉x|0〉m 7→
{
|x〉x ⊗ |x+ (Nc + 1)〉m if x < (Nc + 1)
|x〉x ⊗ |x− (Nc + 1)〉m else

. (3.39)

M1 can be easily implemented with the quantum circuit depicted in Figure 3.10.
The oracle V cannot be simplified using the results from Claim 1. It should implement the

transformation written in Equation (3.40).

V1|x〉x|0〉v 7→
{
|x〉x|1〉v if (x < 2Nc + 1) ∧ (x 6= Nc)
|x〉x|0〉v else

. (3.40)

48 Chapter 3. PDE solver

cmp
2Nc + 1

eq
Nc

X X† eq†

Nc

/n

/1

/1

|x⟩x

|0⟩v

|0⟩a

/n

/1

/1

|x⟩x

|v(x)⟩v

|0⟩a

Set Correct

Figure 3.11: Implementation of the oracle V1. The cmp gate compare the value of the control quantum
register (interpreted as a unsigned integer) with the parameter given (written below the cmp). If the control
register is strictly lower than the parameter, the gate set the qubit it is applied on to |1〉. The eq gate
used in this quantum circuit sets its target qubit to |1〉 if the value of its parameter is equal to the value
encoded on the quantum register controlling the gate.

The implementation of the oracle V1 is depicted in Figure 3.11. The first part, Set, sets the
weight qubit to 1 for all |x〉x such that x < 2Nc + 1. As this does not correspond to the correct
expression of V , the second part Correct is here to set the weight register back to |0〉v when
x == Nc.

The last oracle left to implement in order to be able to simulate H1 is S1, the oracle encoding
the signs of the non-zero entries of H1. The convention used to encode the sign of an entry has
been taken from [79] and is: a positive sign is encoded as |0〉s, a negative sign is encoded as |1〉s.
As shown in Equation (3.38), H1 only contains positive non-zero entries so the sign oracle S1
should implement the simple transformation of Equation (3.41): the identity.

S1|x〉x|0〉s 7→ |x〉x|0〉s (3.41)

3.2. Implementation 49

Oracles for H−1

The matrix H−1 has less regularity than H1, which will lead to a more complex implementation.
The implemented matrix H−1, denoted as H impl

−1 , is described in Equation (3.42).

H impl
−1 =

Nc︷ ︸︸ ︷ Nc+1︷ ︸︸ ︷ 2q−(2Nc+1)︷ ︸︸ ︷
N
c



N
c

+
1



2q
−

(2
N
c

+
1)





0 · · · · · · 0 1 0 · · · · · · 0 0 · · · · · · · · · · · · 0
...

... 0 −1
...

...
...

...
...

...
...

0 · · · · · · 0 0 · · · 0 −1 0
...

...

1 0 · · · 0 0 · · · · · · · · · 0
...

...

0 −1
...

...
...

...
... 0

...
...

...
...

... . . . −1 0
...

...
...

0 · · · · · · 0 −0 0 · · · · · · · · · · · · 0

0 · · · · · · · · · 0 −0 0 · · · · · · · · · · · · 0
...

...
...

... 0
...

...
... . . . −0 0

...
... . . . −0
0 · 0 −0 0 · · · · · · 0


(3.42)

Following the placement of the non-zero and the 0 or −0 entries in the matrix H impl
−1 of

Equation (3.42), the oracle M−1 should implement the transformation

M−1|x〉x|0〉m 7→
{
|x〉x|x+Nc〉m if x < Nc

|x〉x|x−Nc〉m else
. (3.43)

This transformation is quite similar to the one implemented by the oracle M1 in Equa-
tion (3.39): Nc + 1 from the transformation M1 has been replaced by Nc in the transformation
M−1. Thanks to this similarity, the implementation of M−1 will be a nearly-exact copy of the
implementation of M1. The full implementation of the M−1 oracle is depicted in Figure 3.12.

The weight oracle V−1 is the simplest to implement for the matrix H−1, even if it cannot
take advantage of the optimisation discussed in Claim 1. The transformation that should be
implemented by the oracle V−1 is shown in Equation (3.44).

V−1|x〉x|0〉v 7→
{
|x〉x|1〉v if x < 2Nc

|x〉x|0〉v else
. (3.44)

The implementation of the weight oracle V−1 is illustrated in Figure 3.13.
The last oracle left to implement is S−1, the sign oracle. Due to the sign irregularity in

the matrix H impl
−1 , the implementation of S−1 is more involved and requires several ancillary

qubits. According to the shape of the matrix H impl
−1 , the sign oracle S−1 should implement the

50 Chapter 3. PDE solver

cmp
Nc

add
Nc

X

sub
Nc

X
cmp†

Nc

/n

/n

/1

|x⟩x

|0⟩m

|0⟩a

/n

/n

/1

|x⟩x

|m(x)⟩m

|0⟩a
Figure 3.12: Implementation of the oracle M−1. The cmp gate compare the value of the control quantum
register (interpreted as a unsigned integer) with the parameter given (written below the cmp). If the control
register is strictly lower than the parameter, the gate set the qubit it is applied on to |1〉. The add (resp.
sub) gate used in this quantum circuit add (resp. subtract) the value of its parameter to (resp. from) the
quantum register it is applied on only if the control qubit is in the state |1〉.

cmp
2Nc

/n

/1

|x⟩x

|0⟩v

/n

/1

|x⟩x

|v(x)⟩v
Figure 3.13: Implementation of the oracle V−1. The cmp gate compare the value of the control quantum
register (interpreted as a unsigned integer) with the parameter given (written below the cmp). If the control
register is strictly lower than the parameter, the gate set the qubit it is applied on to |1〉.

transformation defined in Equation (3.45).

S−1|x〉x|0〉s 7→
{
|x〉x|0〉s if (x = 0) ∨ (x = Nc)
|x〉x|1〉s else

. (3.45)

An implementation of the oracle S−1 is illustrated in Figure 3.14.

3.3 Results

Due to the size of the quantum circuits studied, this study will only use quantum simulators, i.e.,
classical software simulating the behaviour of a quantum computer, instead of existing quantum
hardware. Using a simulator instead of a real quantum computer has several advantages. In
terms of development process, a simulator allows the developer to perform several actions that

eq
0

eq
Nc

OR

eq†

Nc

eq†

0

X

/n

/1

/1

/1

|x⟩x

|0⟩s

|0⟩a

|0⟩a

/n

/1

/1

/1

|x⟩x

|s(x)⟩s

|0⟩a

|0⟩a
Figure 3.14: Implementation of the oracle S−1. The eq gate used in this quantum circuit is presented
in Figure 3.9 and test if the value encoded in its control qubits is equal to the compile-time value given.
The OR gate flips the target qubits if and only if at least one of the two control qubits is in the state |1〉.

3.3. Results 51

are not possible as-is on a quantum processor such as describing a quantum gate with a unitary
matrix instead of a sequence of hardware operations. Another useful operation that is possible
on a quantum simulator and not currently achievable on a quantum processor is efficient generic
state preparation.

Our implementation uses only standard quantum gates and does not leverage any of the
simulator-only features such as quantum gates implemented from a unitary matrix. In other
words, both the Hamiltonian simulation procedure and the quantum wave equation solver are
“fully quantum” and are readily executable on a quantum processor, provided that it has enough
qubits. As a proof, and in order to benchmark our implementation, we translated the generated
quantum circuits to IBM Q Melbourne gate-set (see Equation (3.4)). IBM Q Melbourne [102] is
a quantum chip with 14 usable qubits made available by IBM on the 23th of September, 2018.

Note 7. We chose IBM Q Melbourne mainly because, at the time of writing, it was the publicly
accessible quantum chip with the largest number of qubits. It is important to note that even
if IBM Q Melbourne has 14 qubits, the quantum circuits constructed in this paper can not
be executed “as is” because they require more qubits. Consequently, because of this hardware
limitation, hardware topology has also been left apart of the study.

This translation to IBM QMelbourne gate set allowed us to have an estimation of the number
of hardware gates needed to either solve the wave equation or simulate a specific Hamiltonian
on this specific hardware. Combining these numbers and the hardware gate execution time
published in [103], we were able to compute a rough approximation of the time needed to solve
the considered problem presented in Equations (3.1) and (3.2) on this specific hardware.

3.3.1 Hamiltonian simulation

As explained in Section 3.2.1, the Hamiltonian simulation algorithm implemented has been first
devised in [25, 79]. A quick review of the algorithm along with implementation details can be
found in Section 3.2.2. This Hamiltonian simulation procedure requires that the Hamiltonian
matrix H to simulate can be decomposed as

H =
m∑
j=1

Hj (3.46)

where each Hj is an efficiently simulable hermitian matrix.
In our benchmark, we simulated the Hamiltonian described in Equation (3.24). According

to [79], real 1-sparse hermitian matrices with only 1 or 0 entries can be simulated with O (n)
gates and 2 calls to the oracle, n being the number of qubits the Hamiltonian H acts on. The
exact gate count can be found in Table 3.1 in the row 1-sparse HS.

Let Oi be the gate complexity of the oracle implementing the ith hermitian matrix Hi of the
decomposition in Equation (3.46), we end up with an asymptotic complexity of O (n+Oi) to
simulate Hi. Once again, the exact gate count is decomposed in Table 3.1.

Applying the Trotter-Suzuki product-formula of order k (see Definition 9 in Section 3.2.2
for the definition of the Trotter-Suzuki product-formula) on the quantum circuit simulating the
hermitian matrices produces a circuit of size

O
(

5k
m∑
i=1

(n+Oi)
)
. (3.47)

This circuit should finally be repeated r times in order to achieve an error of at most ε, with

r ∈ O
(

5kmτ
(
mτ

ε

) 1
2k

)
, (3.48)

52 Chapter 3. PDE solver

and τ = tmaxi ||Hi||, t being the time for which we want to simulate the given Hamiltonian and
|| · || being the spectral norm [25].

Merging Equations (3.47) and (3.48) gives us the complexity

O
(

52kmτ

(
mτ

ε

) 1
2k

m∑
i=1

(n+Oi)
)
. (3.49)

This generic expression of the asymptotic complexity can be specialised to our benchmark
case. The number of gates needed to implement the oracles is O

(
n2) and the chosen decomposi-

tion contains m = 2 hermitian matrices, each with a spectral norm of 1. Replacing the symbols
in Equations (3.47) and (3.48) results in the asymptotic gate complexity of

O
(
5kn2

)
(3.50)

for the circuit simulating e−iHt/r and a number

r ∈ O
(

5kt
(
t

ε

) 1
2k

)
(3.51)

of repetitions, which lead to a total gate complexity of

O
(

52kn2t

(
t

ε

) 1
2k

)
. (3.52)

In order to check that our implementation follows this theoretical asymptotic behaviour, we
chose to let k = 1 and plotted the number of gates generated versus the three parameters that
have an impact on the number of gates: the number of discretisation points Nd (Figure 3.15a),
the time of simulation t (Figure 3.15b) and the precision ε (Figure 3.15c). The corresponding
asymptotic complexity should be

O
(
n2 t

3/2
√
ε

)
= O

(
log2 (Nd)2 t

3/2
√
ε

)
. (3.53)

A small discrepancy can be observed in Figure 3.15a: the theoretical asymptotic number
of gates is O

(
log2 (N)2

)
but the experimental values seems better fitted with an asymptotic

behaviour of O
(
log2 (N)7/4

)
. This may be caused by the asymptotic regime not being reached

yet.

3.3.2 Wave equation solver

The first characteristic of the wave equation solver that needs to be checked is its validity: is
the quantum wave equation solver capable of solving accurately the wave equation as described
in Equations (3.1) and (3.2)?

To check the validity of the solver, we used qat simulators and Atos QLM to simulate the
quantum program generated to solve the wave equation with different values for the number of
discretisation points Nd, for the physical time t and for the precision ε. Figure 3.17 shows the
classical solution versus the quantum solution and the absolute error between the two solutions
for Nd = 32, t = 0.4 and ε = 10−3. The solution obtained by the quantum solver is nearly
exactly the same as the classical solution obtained with finite differences. The error between the
two solutions is of the order of 10−7, which is 4 orders of magnitudes smaller than the error we
asked for.

Once the validity of our solver has been checked on multiple test cases, the next interesting
property we would like to verify is the asymptotic cost: does the implemented simulator seems
to agree with the theoretical asymptotic complexities derived from [56] and [25]?

3.3. Results 53

100 105 1010 1015 1020 1025 1030

0

0.5

1

1.5

·109

N , size of the matrix H̃d

N
um

be
r

of
ga

te
s

Total
γ log2(N)2

γ0 log2(N)1.75

(a) Number of quantum gates versus simulated matrix size. The values of
the constants γ = 250 000 and γ0 = 2 000 000 have been chosen arbitrarily
to fit the experimental data.

0 20 40 60 80 100

0

1

2

·1010

Time of simulation t

N
um

be
r

of
ga

te
s

Total
βt3/2

(b) Number of quantum gates versus physical time. The value of β =
39 000 000 has been chosen arbitrarily to fit the experimental data.

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

105

106

107

108

109

1010

Precision ε

N
u
m
b
er

of
ga
te
s

Experiments

αε−1/2

lower is better

(c) Number of quantum gates versus targeted solution precision. The
value of α = 130 000 has been chosen arbitrarily to fit the experimental
data.

Figure 3.15: Number of quantum gates needed to simulate the Hamiltonian described in Section 3.2.4
using the oracles implemented following Section 3.2.5. Graphs generated with a Trotter-Suzuki product-
formula order k = 1, 32 discretisation points (i.e. n = 6 qubits) for Figures 3.15b and 3.15c, a physical
time t = 1 for Figures 3.15a and 3.15c and a precision ε = 10−5 for Figures 3.15a and 3.15b.

54 Chapter 3. PDE solver

100 105 1010 1015 1020 1025 1030
0

100

200

300

Number of discretisation points Nd

Q
ub

it
nu

m
be

r

Solver arity
11 + 3 log2 x

Figure 3.16: Plot of the number of logical qubits needed to run the wave equation solver for a time t = 1,
a precision ε = 10−5 and a Trotter-Suzuki product-formula of order k = 1. The constants offset 11 and
factor 3 have been chosen arbitrarily to fit the experimental data. The number of physical qubits needed
will depend on their error rate as noted in [104]. Multiplying the number of logical qubits by 3 to 4 orders
of magnitude might be a good estimate of the actual number of physical qubits required.

In our specific case, the Hamiltonian H to simulate can be decomposed in two 1-sparse
hermitian matrices, both of them having a spectral norm of 1. The exact decomposition can be
found in Section 3.2.4. We chose to let the product-formula order be equal to k = 1 and reuse
the asymptotic complexity found in Equation (3.52) by changing the time of simulation t by the
time f(t):

O

52kn2f(t)
(
f(t)
ε

) 1
2k

 . (3.54)

Following the study performed in [56],

f(t) = t

δx
= t (Nd − 1) (3.55)

where δx is the distance between two discretisation points. Moreover, it is possible to prove (see
Section 3.2.4) that

n = dlog2(2Nd − 1)e (3.56)

Replacing f(t) and n in Equation (3.47) and Equation (3.48) gives us a gate complexity of

O
(
5k log2 (Nd)2

)
(3.57)

to construct a circuit simulating e−iHt/r and a number of repetitions

r ∈ O
(

5ktNd

(
tNd

ε

) 1
2k

)
. (3.58)

Merging the two expression results in a gate complexity of

O
(

52ktNdlog2(Nd)2
(
tNd

ε

) 1
2k

)
. (3.59)

3.3. Results 55

0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

x

y

Classical
Quantum

(a) Quantum versus classical solution. Solutions are not visually distinguishable on
the graph, see the associated absolute error.

0 0.2 0.4 0.6 0.8 1

0

1

2

·10−7

x

A
bs

ol
ut

e
er

ro
r

absolute error

(b) Absolute error between the solution obtained by a classical finite-difference solver
and the solution computed with the quantum solver.

Figure 3.17: Comparison of the classical solver and the quantum solver. Both solvers solved the 1-D
wave equation with Nd = 32 discretisation points and a physical time of t = 0.4. The classical solver
uses finite-differences with a very small time-step in order to avoid as much as possible errors due to
time-discretisation. The quantum solver was instructed to solve the wave equation with a precision of at
least ε = 10−3, used a Trotter-Suzuki order of k = 1. The solutions of the two solvers are too close to be
able to notice a difference (they overlap on the graph), that is why a second graph plotting the absolute
error between the two solvers is included.

56 Chapter 3. PDE solver

Choosing the Totter-Suzuki formula order k = 1 gives us a final complexity of

O
(
N

3/2
d log2(Nd)2 t

3/2
√
ε

)
(3.60)

to solve the wave equation presented in Equation (3.1). This theoretical result is verified exper-
imentally in Figure 3.18a.

3.3.3 Gate count analysis

Precise subroutines gate counts

Table 3.1 summarises the gate count and ancilla qubit requirements for all the major subroutines
used in the wave equation solver implementation. Using the entries of this table, it is possible
to compute an estimation of the number of gates required to solve the wave equation.

As explained in Section 3.2.2, we need to simulate each of the 1-sparse Hamiltonians in the
decomposition. Aggregating the estimates in Table 3.1 we obtain the costs in Table 3.2 for the
Hamiltonian simulation part. Note that the cost of the adder has been voluntarily omitted from
the computations in order to be able to compare the cost with different adder implementations.
Let a be the gate cost of the adder implementation chosen, the cost of simulating the Hamiltonian
needed to solve the 1-dimensional wave equation is: 82n − 35 + 12aToffoli Toffoli gates, 84n +
21 + 9 [0, n− 1] + 12aCNOT CNOT gates and O (n) + 12a1−qubit 1-qubit gates.

Choosing an adder implementation and simplifying the gate counts by omitting negligible
terms we obtain the gate counts summarised in Table 3.3. It is interesting to note that even
if the arithmetic-based adder adds huge constants in the gate count, it does not change the
asymptotic complexity whereas Draper’s adder changes the number of CNOT gates required from
O (n) to O

(
n2).

Impact of the precision requirements

The gate counts presented in Tables 3.1 to 3.3 are only valid when the precision of the solver
is not accounted for. When the solver precision matters, an additional step that consists is
splitting the Hamiltonian Simulation into r steps needs to be performed as noted in [78, arXiv:
Appendix F].

Several bounds exist to determine a r ∈ N∗ that will analytically ensure that the maximum
allowable error ε is not exceeded. The definition of such bounds can be found in [78, arXiv:
Appendix F] and [108].

The first bound has been devised by analytically bounding the error of simulation due to
the Trotter-Suzuki formula approximation by ε0∣∣∣∣∣∣

∣∣∣∣∣∣exp

−itm−1∑
j=0

Hj

− [S2k

(
− it
r

)]r∣∣∣∣∣∣
∣∣∣∣∣∣ 6 ε0 (3.61)

and then let ε0 6 ε for a given desired precision ε. If we let Λ = maxj ||Hj || and

τ = 2m5k−1Λ|t| (3.62)

then

rana
2k =

max

τ, 2k

√
eτ2k+1

3ε


 . (3.63)

This bound is called the analytic bound.

3.3. Results 57

100 101 102 103 104 105 106 107 108 109
106

1011

1016

1021

Number of discretisation points Nd

N
u
m
b
er

o
f
g
a
te
s

Total

λN
3/2
d log2(Nd)

2

(a) Number of quantum gates needed to solve the wave equation described in Equa-
tion (3.1) versus discretisation size. The value of λ = 300 000 has been chosen
arbitrarily to fit the experimental data.

100 101 102 103 104 105 106 107 108 109

100

105

1010

1015

Number of discretisation points Nd

Es
tim

at
ed

ex
ec

ut
io

n
tim

e
us

in
g

IB
M

Q
M

el
bo

ur
ne

(s
)

ga
te

tim
e

Total
δN

3/2
d log2(Nd)

2

(b) Estimated execution time of the wave equation solver on IBM Q Melbourne
hardware. Individual gate times have been extracted from [105] and [103]. GF pulse
time has been approximated via arithmetic mean to 347ns, GD pulse time is 100ns
and buffer time is 20ns. The value of δ = 0.06 has been chosen arbitrarily to fit the
experimental data.

Figure 3.18: Graphs generated with a Trotter-Suzuki product-formula order k = 1, a physical time t = 1
and a precision ε = 10−5.

58 Chapter 3. PDE solver

A better bound called the minimised bound can be devised by searching for the smallest
possible r that satisfies the conditions detailed in [78, Propositions F.3 and F.4]. This bound is
rewritten in Equation (3.64).

rmin
2k = min

{
r ∈ N∗ : τ

2k+1

3r2k exp
(
τ

r

)
< ε

}
(3.64)

Another bound involving nested commutators of the Hi is described in [108] and gives

rcomm
2k ∈ O

α 1
2k
commt

1+ 1
2k

ε
1

2k

 (3.65)

where k is the order of the product-formula used, t the time of simulation, ε the error and

αcomm =
m−1∑

i0,i1,...,ip=0

∣∣∣∣[Hip , . . . [Hi1 , Hi0]
]∣∣∣∣ . (3.66)

Once the value of r has been computed, the quantum circuit simulating the matrix H for
a time t

r should be repeated r times. This adds a factor of r in front of all the gate counts
computed in Tables 3.1 to 3.3.

Impact of error-correction

The final implementation of the solver requires a large number of quantum gates as can be seen
in Figure 3.18a. But quantum chips are currently experiencing high levels of noise, most of
the time above 10−4 for single-qubit gates and even higher for measurement and 2-qubit gates,
which rules out the possibility to run such a large quantum circuit on a bare-bone NISQ chip (see
Definition 11). One particularly interesting improvement to quantum chips is error-correction
that is able to “build” error-free qubits by using several noisy ones.

Definition 11 (Noisy Intermediate-Scale Quantum (NISQ) chip). The NISQ acronym has been
introduced in [109] and refers to quantum chips with 50 to a few hundreds imperfect qubits that
experience noise.

When error-correction is studied, two gates are particularly important: T and Toffoli gates.
The T gate has a prohibitive cost when compared to the Clifford quantum gates and implement-
ing a Toffoli gate requires 7 of such T gates as noted in [104] and [110, Fig. 1].

Table 3.4 summarise the cost of the non Clifford quantum gates used in the implementation
of the 1-dimensional wave equation solver. The rotation gates need to be approximated. One
solution to approximate the Rn and Ph gates is given in [106]. In order to obtain practical
results as opposed to theoretical ones, we chose to use the number computed in [111, Table 1].

The final T -count is summarised in Figure 3.19. From Figure 3.19b it is clear that the
add_arith implementation is more efficient than the add_qft one.

3.4 Additional work

3.4.1 Implementation of higher-order Laplacians

The results shown in Section 3.3 have all been generated using the second-order discretisation
formula shown in Equation (3.15). Higher-order formulas are studied in [56, VI, VII and C].

Note 8. As shown in [56, VII.B], higher-order discretisations with Neumann boundary condi-
tions are not implementable using the algorithm described in Section 3.2.4.

3.4. Additional work 59

Adder used T -count
add_qft 6870n2 + 34660n− 245
add_arith 42510n− 1225

(a) Number of T -gates needed to
simulate the Hamiltonian used to
solve the 1-dimensional wave equa-
tion depending on the adder imple-
mentation used. Based on Table 3.3
and Table 3.4.

100 101 102 103

105

106

107

108

109

1010

n, number of qubits

T
-c

ou
nt

add_qft
add_arith

(b) Plot of the T -count devised in Figure 3.19a for the two
different adder implementations.

Figure 3.19: Analysis of the T -count of the 1-dimensional wave equation solver quantum implementation
with respect to the adder implementation used.

In this appendix we replace the second-order formula given in Equation (3.15) and used in
this manuscript by the fourth-order formula given in [56, Eq. (46)] and re-written below

∂2φ

∂x2 (iδx, t) ≈ 1
δx2

(5
2φi,t −

4
3 (φi−1,t + φi+1,t) + 1

12 (φi−2,t + φi+2,t)
)
. (3.67)

We are left to devise the matrix B4
d that satisfy B4

dB
4
d
† = ∆4 where ∆4 is the discretisation

matrix arising from the fourth-order finite-differences approximation in Equation (3.67).
[56, Eq. (47) and VII.C] devised an analytic formula for B̂4

d , the B4
d matrix with periodic

boundary conditions, using the matrix Ŝ representing the cyclic permutation {1, 2, . . . , N} with
entries Ŝi,j = δi,(j+1 mod N) as shown in Equation (3.68).

Ŝ =



0 0 · · · · · · · · · 0 1
1 0 0

0
...
...
...
0 · · · · · · · · · 0 1 0


(3.68)

With this definition of Ŝ, the analytic formula for B̂4
d is given in Equation (3.71), with b and

c being solution of [56, Phys. Rev. A, Eqs. (53,54,55)]. The exact values for b and c are:

b = ± 1

2
√

3
√

7± 4
√

3
(3.69)

c = ±

√
7± 4

√
3

12 (3.70)

with the ± signs that can be chosen freely. Note that, b = ± 1
2
√

3
√

7±4
√

3
and c = 1

12b are

irrational because
√

3
√

7± 4
√

3 =
√

3
√

2 +
√

3
2

=
√

3
(
2 +
√

3
)

= 2
√

3 + 3 is irrational.

60 Chapter 3. PDE solver

Equation (3.72) shows the matrix shape with its entries.

B̂4
d = cŜ − (b+ c) ∗ I + bŜ† (3.71)

≈



b+ c b 0 · · · · · · · · · 0 c

c b+ c b
. . . 0

0 c
.

...

...

... b 0

0 . . . c b+ c b
b 0 · · · · · · · · · 0 c b+ c



(3.72)

Because periodicity has not been studied in the main use-case of this manuscript, we would
like to also remove the need of periodic boundary conditions in this higher-order Laplacian
discretisation. This can be achieved by removing the upper-right entry of Ŝ by changing it from
1 to 0. The resulting matrix S is shown in Equation (3.73).

S =



0 0 · · · · · · · · · · · · 0

1 0
...

0
...
...
...
0 · · · · · · · · · 0 1 0


(3.73)

Using the exact same formula we can devise B4
d :

B4
d = cS − (b+ c) ∗ I + bS† (3.74)

≈



b+ c b 0 · · · · · · · · · · · · 0

c b+ c b
.

0 c
.

...

...

... b 0

... . . . c b+ c b
0 · · · · · · · · · · · · 0 c b+ c



(3.75)

3.4. Additional work 61

Replacing B4
d in Equation (3.19) we obtain

H̃4
d = 1

δx



0 · · · · · · · · · 0 b+ c b 0 · · · 0
...

... c b+ c b
.

...
... 0 c

. 0
...

...
... b+ c b

0 · · · · · · · · · 0 0 · · · 0 c b+ c
b+ c c 0 · · · 0 0 · · · · · · · · · 0

b b+ c
.

...
...

0 0
...

...
... b+ c c

...
...

0 · · · 0 b b+ c 0 · · · · · · · · · 0



. (3.76)

Claim 4. One of the main difference with the second-order approximation used all along this
paper is that, with the fourth-order approximation, the entries of the matrix H̃4

d are no longer
multiples of a common number α ∈ R.

Proof. It is convenient to first remark that

c =
(
7± 4

√
3
)
b. (3.77)

Now let assume that ∃α ∈ R such that ∃(k1, k2, k3) ∈ Z verifying
b = αk1

c = αk2

b+ c = αk3

. (3.78)

The 3rd equality is trivially a reformulation of the 2 others as if ∃ (k1, k2) ∈ Z2 satisfying the
first 2 conditions, then the 3rd condition is also verified with k3 = k1 + k2. Moreover, as b 6= 0
and c 6= 0, α 6= 0 so we can divide both sides of both of the remaining equations by α to obtain
the equivalent system of equations: 

k1 = b

α

k2 = c

α

. (3.79)

This system can be reformulated using Equation (3.77) as
k1 = b

α

k2 =
(
7± 4

√
3
)
k1

(3.80)

This is a contradiction as 7 ± 4
√

3 is irrational, so by definition of an irrational number k2 =(
7± 4

√
3
)
k1 cannot be an integer.

This means that we cannot write down H̃4
d as an integer weighted matrix multiplied by a

real number, and so the trick used in Section 3.2.4 to simulate the integer weighted matrix Hd

for a time αt is no longer applicable.
Consequently, and independently of the decomposition we use for Ĥ4

d , at least one of the
matrices in the decomposition of Ĥ4

d will not be “easy to simulate” as defined in Definition 8.

62 Chapter 3. PDE solver

Ultimately, the main consequence of this observation is that we will have to use a real-
weighted Hamiltonian simulation procedure. Such a procedure can be found in [79] but requires
to approximate the real-weighted entries with a fixed-point representation that has at least 2
evident caveats:

1. It is impossible to encode both b and c exactly with a fixed-point representation as shown
in Section 3.4.1. This means that we add another layer of approximation, even before the
approximation caused by the use of a product-formula.

2. The Hamiltonian simulation procedures used for real numbers requires more qubits. More
precisely, the number of additional qubits required depends on the desired precision ε and
grows as − log2 (ε).

Note 9. Even if the H4
d matrix seems quite hard to simulate, it is still a 3-sparse matrix. This

means that it is still manageable to hand-write the oracles. Moreover, having a small number
of matrices in the decomposition helps in reducing the error introduced by product-formulas.

3.4.2 Optimisation of the implementation

Once the correctness of the implementation validated, one of the most important remaining work
is to try to optimise the implementation. The optimisation of a software is often performed as
an iterative task.

The first step is to define a figure of merit, a quantity we want to minimise during the
optimisation process. Among the most obvious figures of merit are the total number of gates,
the number of CNOT gates or the total execution time of the quantum program. More complex
quantities can also be considered, such as the execution time using error correction codes or
the final state fidelity. In this chapter we decided to take into account an estimation of the
total execution time of the quantum program on an imaginary device that shares today’s chips
characteristics.

The second step of the optimisation process consists in isolating the subroutines that con-
tribute the most to the figure of merit. As an example, if the quantum program spend 90% of
the total execution time in one subroutine, this subroutine should be the first place to look for
optimisations.

After the isolation of one or two subroutines, the actual optimisation can take place. The
goal of this third step is to decrease the impact of the subroutines considered on the overall
figure of merit without changing the final result of the implementation.

Finally, once the optimisation is performed, the optimisation process can be repeated by
re-starting at the second step, until the program is considered sufficiently optimised.

One of the main difficulty we encountered when applying this optimisation process was
to correctly isolate the most time-consuming subroutines. In classical computing, this step is
usually performed with specialised tools such as gprof or a more advanced profiler, but no such
tool exist for quantum programs. In order to fill this gap we developed qprof, a tool that
analyses a quantum program and generates a report similar to the one generated by gprof.
Using qprof and some of the various tools compatible with gprof, we plotted the call-graph
shown in Figure 3.20a. The qprof tool is presented in greater detail in Chapter 4.

From this call-graph, it is clear that the adder is the most costly subroutine and that it
should be optimised. The adder internally uses the Quantum Fourier Transform (QFT), which
takes more than 50% of the total execution time. The issue is that the QFT implementation is
already very concise and we do not expect to be able to optimise it enough to cut significantly
its overall cost. This leads us to the conclusion that a new algorithm that do not require the
QFT should be used to implement an adder. Such an algorithm can be found in [107].

Changing the implementation of the adder from Draper’s adder to the arithmetic-based adder
from [107] improves drastically the total execution time of the quantum program and produce

3.5. Discussion 63

the call-graph in Figure 3.20b, which shows that, everything else unchanged, the relative cost of
the adder over the total cost went from 76.24% when using Draper’s adder to 31.14% with the
arithmetic-based adder.

evolve_1d_dirichlet_no_repetition_no_time_adjustment
100.00%
(0.00%)

1×

simulate_using_trotter
100.00%
(0.00%)

1×

simulate_signed_integer_weighted_hamiltonian
100.00%
(0.00%)

3×

oracle1
66.15%
(0.00%)

4×

oracle2
30.89%
(0.00%)

2×

oracle_dirichlet1_1d_wave_equation
66.15%
(0.11%)

4×

oracle_dirichlet2_1d_wave_equation
30.89%
(0.04%)

2×

compare_const
20.46%
(0.30%)

38×

Cadd_const
76.27%
(0.00%)

12×

Csub_const
38.13%
(0.00%)

6×

high_bit_compute
19.84%
(9.90%)

38×

CADD_CONST
76.27%

(12.80%)
12×

CCNOT
10.67%

(10.67%)
4164×

QFT
50.66%

(25.33%)
24×

CPH
38.10%

(38.10%)
46092×

100.00%
1×

100.00%
3×

66.15%
4×

30.89%
2×

66.15%
4×

30.89%
2×

15.07%
28×

25.42%
4×

25.42%
4×

19.84%
38×

76.27%
12×

38.13%
6×

9.85%
3844×

50.66%
24×

12.80%
15492× 25.29%

30600×

5.38%
10×

12.71%
2×

12.71%
2×

(a) Call graph of the quantum wave equa-
tion solver using Draper’s adder (QFT-
based).

evolve_1d_dirichlet_no_repetition_no_time_adjustment
100.00%
(0.00%)

1×

simulate_using_trotter
100.00%
(0.00%)

1×

simulate_signed_integer_weighted_hamiltonian
100.00%
(0.00%)

3×

oracle1
65.17%
(0.00%)

4×

A
8.04%

(0.00%)
6×

oracle2
26.26%
(0.00%)

2×

oracle_dirichlet1_1d_wave_equation
65.17%
(0.31%)

4×

oracle_dirichlet2_1d_wave_equation
26.26%
(0.13%)

2×

compare_const
59.33%
(0.88%)

38×

Cadd_const
31.14%
(0.00%)

12×

Csub_const
15.57%
(0.00%)

6×

high_bit_compute
57.57%

(28.79%)
38×

CADD_CONST
31.14%

(15.56%)
12×

CCNOT
44.09%

(44.09%)
5940×

100.00%
1×

100.00%
3×

65.17%
4×

8.04%
6×

26.26%
2×

65.17%
4×

26.26%
2×

43.72%
28×10.38%

4×

10.38%
4×

57.57%
38×

31.14%
12×

15.57%
6×

28.53%
3844×

13.18%
1776×

15.61%
10×

5.19%
2×

5.19%
2×

(b) Call graph of the quantum wave equation
solver using an arithmetic-based adder.

Figure 3.20: All the gates or subroutines that account for less than 5% of the total execution time are
not displayed. Execution times for u1, u2, u3 and cx gates have been averaged over all the data available
for the quantum chip IBMQ Melbourne. Using the arithmetic-based adder, the overall execution time
improved by a factor of 31.

3.5 Discussion

In this chapter, we focused on the implementation of a PDE solver with a focus on the practical
cost of implementing a 1-dimensional quantum wave equation solver on a quantum computer. We
showed that a quantum computer is able to solve partial differential equations by constructing
and simulating the quantum circuits described. We also studied the scaling of the solver with

64 Chapter 3. PDE solver

respect to several parameters of interest and show that the theoretical asymptotic bounds are
mostly verified.

Several challenges have been encountered during the development of the research presented
in this chapter. One of the most time-consuming part in terms of development was the imple-
mentation of the different oracles, which also turned out to be very error-prone and hard to
debug. The implementation of oracles will likely still be a necessary step for all the practical
implementations of partial differential equation solvers and would, in our opinion, require more
automatised tools to assist the work.

Recent developments introduced the possibility to describe the quantum oracle using a
domain-specific language and generate the corresponding code automatically, simplifying the
development process by allowing the developer to focus on the high-level description. This is for
example exactly the purpose of the recently introduced HODL library [112] or of the commercial
software developed by Classiq [113].

3.6 Supplementary material
The implementation of the quantum wave equation solver is available at https://gitlab.
com/cerfacs/qaths. The qprof tool is available at https://gitlab.com/qcomputing/qprof/
qprof.

https://gitlab.com/cerfacs/qaths
https://gitlab.com/cerfacs/qaths
https://gitlab.com/qcomputing/qprof/qprof
https://gitlab.com/qcomputing/qprof/qprof

3.6. Supplementary material 65

Gate Toffoli count CNOT count 1-qubit gate count # ancillas notes
or 1 0 5 0

QFT 0 3
(
2n2 − 2n+ bn2 c

) 2
(
n2 + n

)
H

4
(
n2 − n

)
T

n2−n
2 Rn

1 |0〉-init

Rn gates
might need
to be de-
composed
[106].

add_arith 20n− 10 22n 0 n− 1 |0〉-init See [107].

add_qft 0 6
(
2n2 − 2n+ bn2 c

) 2
(
n2 + n

)
H

4
(
n2 − n

)
T

3n2−n
2 Rn

1 |0〉-init
See QFT note
on Rn. Fig-
ure 3.7.

sub_qft 0 6
(
2n2 − 2n+ bn2 c

) 2
(
n2 + n

)
H

4
(
n2 − n

)
T

3n2−n
2 Rn

2n X

1 |0〉-init
See QFT note
on Rn. Fig-
ure 3.5.

CARRY 2(n− 1) 2 + [0, n− 1] 2n+ [0, n− 1] X n− 1 borrowed See [100].
n-contr. CNOT 4n 0 0 n borrowed See [101].
eq 4n 0 2 [0, n] X n borrowed Figure 3.9.

cmp 2 (n− 1) 2 + [0, n− 1] 4n+ [0, n− 1] X n− 1 borrowed
See CARRY
and Sec-
tion 3.2.5.

A 2n 4n 3n H 3n S
2n T 2n X 0 See [79, Fig.

4.3.].

e−iZ⊗Z⊗Ft 8n 24n 36n Ph
8 X 0

Adapted
from [79,
Fig. 4.6]

1-sparse HS 10n 28n
3n H 3n S
2n T 2n+ 8 X

36n Ph
0

Oracle
implementa-
tion cost not
included. 2
calls to the
oracle are
required.
Figure 3.3.

M1 4 (n− 1) 5 + 2 [0, n− 1] 10n+ 2 + [0, n− 1] X 1 |0〉-init
n− 1 borrowed

add imple-
mentation
cost not
included. 2
calls to add
are required.
Figure 3.10.

V1 2 (n− 1) 2 + [0, n− 1] 4n+ [0, n− 1] X n− 1 borrowed Figure 3.11.

S1 0 0 0 0 See Equa-
tion (3.41).

M−1 4 (n− 1) 5 + 2 [0, n− 1] 10n+ 2 + [0, n− 1] X 1 |0〉-init
n− 1 borrowed

add imple-
mentation
cost not
included. 2
calls to add
are required.
Figure 3.12.

V−1 2 (n− 1) 2 + [0, n− 1] 4n+ [0, n− 1] X n− 1 borrowed Figure 3.13.
S−1 16n+ 1 0 5 + 8 [0, n] X n borrowed Figure 3.14.

Table 3.1: Precise gate count for the most important subroutines used in the quantum implementation
of the wave equation solver. n always represent the size of the input(s), except for the n-controlled CNOT
where n is the number of controls. When the number of gates depends on a generation-time value, the
range of all the integer values possible is shown with square brackets. For example, [0, n− 1] means that,
depending on the generation-time value provided, the number of gates will be an integer between 0 and
n− 1 included. |0〉-init ancillas represent the standard ancilla-type: qubits that are given in the state |0〉
and should be returned in that exact same state. On the other side, borrowed ancillas can be given in any
state and should be returned in the exact same state they were borrowed in.

66 Chapter 3. PDE solver

Unitary Toffoli count CNOT count 1-qubit gate count # ancillas notes

e−iH1t 22n− 12 28n+ 7 + 3 [0, n− 1]
3n H 3n S
2n T 36n Ph

30n+ 10 + 2 [0, n− 1] X

1 |0〉-init
n− 1 borrowed

add imple-
mentation
cost not
included. 4
calls to add
are required.

e−iH−1t 38n− 11 28n+ 7 + 3 [0, n− 1]
3n H 3n S
2n T 36n Ph

30n+ 15 + 10 [0, n] X

1 |0〉-init
n− 1 borrowed

add imple-
mentation
cost not
included. 4
calls to add
are required.

e−iHt 82n− 35 84n+ 21 + 9 [0, n− 1]
9n H 9n S
6n T 108n Ph

90n+ 35 + 14 [0, n] X

1 |0〉-init
n− 1 borrowed

add imple-
mentation
cost not
included. 12
calls to add
are required.

Table 3.2: Number of gates and ancillas needed to simulate the easy-to-simulate Hamiltonians H1 and
H−1 that are part of the decomposition of H as well as e−iHt. It is important to realise that the gate
counts for e−iHt are only valid up to a given t or ε (once one is fixed, the value of the other can be
computed). In order to make the gate count generic for any t and ε, the number of repetitions should be
computed (see n in Equation (3.13)). Note that some of the [0, n− 1] ranges have been simplified to [0, n]
for conciseness.

Adder used Toffoli count CNOT count 1-qubit gate count # ancillas

add_qft 82n− 35 144n2 − 60n

24n2 + 25n H 9n S
48n2 − 42n T 108n Ph

18n2 − 18n Rn
114n+ 35 + 14 [0, n] X

2 |0〉-init
n− 1 borrowed

add_arith 222n− 175 348n+ 21 + 9 [0, n− 1]
9n H 9n S
6n T 108n Ph

90n+ 35 + 14 [0, n] X

n |0〉-init
n− 1 borrowed

Table 3.3: Number of gates and ancillas needed to simulate the Hamiltonian used to solve the 1-
dimensional wave equation depending on the adder implementation used. It is important to realise that
the gate counts for e−iHt reported in this table are only valid up to a given t or ε (once one is fixed, the
value of the other can be computed). In order to make the gate count generic for any t and ε, a number
of repetitions r should be computed (named n in Equation (3.13) and studied in [78, arXiv: Appendix F]
and [108]). Note that the gate counts have been simplified by removing negligible terms when possible.

Gate T count Notes
T 1
S 2
CCNOT 7 See [104].
Ph 379 ε = 10−15, approximated from [111].
Rn 379 ε = 10−15, approximated from [111].

Table 3.4: T -gate cost of the non Clifford quantum gates used in the wave equation solver implementa-
tion.

Part III

Algorithm analysis

67

Chapter

4
qprof

This chapter deals with a crucial part of software development: debugging and optimising pro-
grams in order to ensure their correctness and efficiency. These tasks are of critical importance in
any program implementation and require a deep and comprehensive knowledge of the analysed
implementation along with efficient ways to isolate bugs or bottlenecks. The work presented
in this chapter provides a new and human-readable way to visualise highly complex quantum
programs. qprof offers unique insights on the quantum circuits studied and greatly improve the
manual optimisation process and visualisation of a given implementation. The tool has been
presented in [114].

Contents
4.1 Introduction . 70

4.2 Related work . 71

4.2.1 Classical profilers . 71

4.2.2 Quantum profilers . 71

4.3 How does qprof works? . 73

4.3.1 General structure . 73

4.3.2 The qcw package . 73

4.3.3 Core data structures and logic . 75

4.3.4 Exporters . 79

4.4 Complexity and runtime analysis . 83

4.4.1 Asymptotic complexity of qprof . 83

4.4.2 Real-world execution time . 86

4.5 Code examples and practical applications 86

4.5.1 Benchmarking a simple program . 87

4.5.2 Grover’s algorithm . 89

4.5.3 Quantum wave equation solver . 89

4.6 Discussion . 93

4.6.1 Comparison with the state-of-the-art . 93

4.6.2 qprof and quantum circuit compilation 93

4.6.3 qprof and hardware-aware timings . 95

4.6.4 Limitations of the gprof exporter . 95

4.6.5 qprof and NISQ circuits . 95

4.6.6 qprof and dynamical circuits . 95

4.7 Conclusion . 96

70 Chapter 4. qprof

4.1 Introduction

The quantum computing field has been evolving at an increasing rate in the past few years
and is currently gaining more traction. Several quantum chips, the underlying hardware that
enable researchers and companies to run quantum algorithms, have been announced by different
research teams. The error rates and number of qubits provided by these chips have greatly
improved in the last few years, with quantum hardware reaching up to 127 qubits in the end of
2021 [115].

Software has also seen a tremendous rise with the emergence of several quantum comput-
ing frameworks and languages such as Qiskit [116], Q# [117], PyQuil [118], Cirq [119] or
myQLM [120] to name a few. These frameworks help in speeding-up the process of imple-
menting a quantum algorithm by providing their own “standard library”. Most of them also
include specialised libraries whose purpose is to facilitate the development and testing of new
quantum algorithms. For example, all the quantum computing frameworks cited previously in-
clude a library to simulate quantum circuits, some even implement several simulation algorithms
such as a full state-vector simulator, a simulator for stabiliser circuits [121, 122] or a simulator
using matrix-product states [123, 124]. Most of the frameworks that target real quantum chips
also include libraries to characterise a given quantum hardware, using for example randomised
benchmarking [125–129] methods, or hardware noise mitigation [130, 131].

Finally, a large majority of the quantum computing frameworks provide a way to automat-
ically optimise a quantum circuit. This optimisation is often performed during compilation,
when the abstract quantum circuit representation is translated to be compliant with the tar-
geted hardware. Automatic optimisation of quantum circuits is a broad area of research with
algorithms based on pattern-matching [132–134], gate optimisation algorithms [135, 136] or even
pulse-level optimisation [137–139].

But even though automatic optimisation has already been shown to be successful in opti-
mising complex quantum circuits [29], most algorithms only perform local optimisations, most
of the time on a flattened quantum circuit, without prior knowledge of the algorithms used to
construct the circuit.

Identifying the usage of a non-optimal algorithm in the implementation and replacing it
with a more efficient one is, for example, an optimisation that cannot be performed in general
by automatic optimisers. This improvement should rather be spotted and optimised by the
developer.

Currently, the only way one has to optimise a given quantum implementation beyond what
is provided by automatic methods is “trial and error”. First, try to locate a “hot spot” (i.e. a
subroutine that takes a considerable amount of resources) in the implementation, either by a
tedious theoretical analysis or a manual counting of the routine calls. Then, optimise the hot
spot found, either by improving the implementation or using a better algorithm. Finally check
if the optimisation performed improved the overall performance of the implementation. This
process has a severe drawback that makes it impractical on real-world implementations: the first
step that consists in finding the hot spots is either imprecise or potentially very long, tedious
and error-prone on large implementations.

qprof aims at replacing this manual, tedious and error-prone step by automatically generating
a report with all the useful information needed to find the hot spots of the given quantum
program implementation. The qprof tool has been strongly inspired by classical profilers such
as gprof [140, 141] which try to solve the exact same issue but in classical (non-quantum)
programming.

The chapter is organised as follows. In Section 4.2, we review the related work around
classical profilers and quantum resource estimation. Section 4.3 explains the internals of qprof
and details its architecture, the design choices made, and their impact on the tool efficiency,
extensibility and usability. We then include in Section 4.4 a theoretical and practical analysis of

4.2. Related work 71

the tool runtime. Code snippets and practical examples are provided in Section 4.5 to illustrate
the tool usage. Finally, we discuss some of the limitations and potential improvements of qprof
in Section 4.6.

4.2 Related work

4.2.1 Classical profilers

Classical profilers are tools that have been used since the beginning of programming languages
back in the 1970 decade. One of the first profiler was prof, included in the Linux kernel in
1972 [142]. gprof [140] came out in 1982, extending prof by performing a complete call-graph
analysis. Since then, a lot of different profilers using different methods to profile programs were
introduced, each of the profiling methods having its strengths, weaknesses and compromises.

For example statistical profilers, that sample the program call-stack at regular intervals, are
less precise due to their finite sampling rate but have a very low overhead (for example, between
1 and 3% as reported by the maintainers of OProfile [143], a statistical profiler, on the tool’s
FAQ). On the other side of the spectrum, instead of executing the profiled program directly on
the target hardware, “Instruction Set Simulators” can be used to run the program in an isolated
and entirely controlled environment. Profilers using this technique have the advantage of being
very accurate and allow the collection of a large variety of indicators, with the drawback of a
considerable runtime overhead. Another technique used by some profilers such as gprof [140]
is to instrument the code. The information that can be gathered by this kind of profilers is less
exhaustive than the instruction set simulator method, but the overhead they add to the program
runtime execution is in general relatively low. Finally, some profilers use static analysis in order
to gather data without even executing the program. For classical computers, these profilers are
limited to information such as the instruction count and variations thereof due to the highly
complex way current classical processors execute instructions.

Independently of the method used by the profiler, its goal is to gather data about the profiled
program execution in order to give a synthetic and readable report to the user. This report will
most of the time be used to find one or several “hot spots”, which are portions of code or functions
that take a considerable amount of an important resource, frequently the total execution time.
Finding hot spots is a necessary step to optimise the implementation of the profiled program as
it allows to isolate small portions of code that should be improved in order to lower down the
amount of resources needed by the program.

A profiling report obtained thanks to the gprof profiler has been included in Figure 4.1 with
a simple C code in Figure 4.1a and the resulting profiling report in Figure 4.1b.

4.2.2 Quantum profilers

Most of the quantum computing frameworks available today only provide basic resource estimate
capabilities that range from a shallow analysis of the quantum circuit to a report containing the
gate counts for some fixed set of gates. Moreover, all the framework analysed are only able to
analyse quantum circuits written in their ecosystem, without any cross-framework capabilities.

This is for example the case of Qiskit that performs a shallow analysis of its QuantumCircuit
instances by using the count_ops method, returning a dictionary containing the number of
times each subroutine is called. Note that this method is limited as it does not recurse into
the subroutines called by the main routine. The myQLM framework provides the same features
with its Circuit.statistics method.

The ScaffCC compiler [144] provides a little bit more information than Qiskit and myQLM by
computing the gate count (for the gates {X,Z,H, T, T †, S, S†, CX}) for each routine encountered
in the compiled quantum program. This report is useful to perform cost estimation, but the list

72 Chapter 4. qprof

void D(void) {
for(unsigned count = 0; count < 0xFFFF; count ++);

}

void C(void) {
for(unsigned count = 0; count < 0xFF; count ++)

D();
}

void B(void) {
for(unsigned count = 0; count < 0xFFFF; count ++)

D();
}

void A(void) {
B();
C();
for(unsigned count = 0; count < 0xFF; count ++)

D();
}

int main(void) {
A();
return 0;

}

(a) C code to be profiled by gprof and compiled with gcc -pg
-o profile-exec profile.c.

0.39%
255×

99.23%
1×

0.39%
1×

99.23%
65535×

0.39%
255×

100.00%
1×

D
100.00%

(100.00%)
66045×

A
100.00%
(0.00%)

1×

B
99.23%
(0.00%)

1×

C
0.39%

(0.00%)
1×

main
100.00%
(0.00%)

(b) Profiling report obtained with gprof
and post-processed with the gprof2dot
tool.

Figure 4.1: Example of call graph that can be generated with gprof on a trivial classical program written
in C and compiled with gcc. Even though one could count manually the number of operations performed
by each functions on such a trivial program, using gprof is less error-prone and outputs a clear view
of the program hot spot: the function D. Someone wanting to optimise the execution time of this simple
program can directly see on gprof report that there are only 3 potential approaches to reduce the program
runtime: optimise D directly, reduce the number of times B is calling D or remove the unique call to B
from A and replace it with something more efficient.

4.3. How does qprof works? 73

of basis gates used does not seem to be modifiable and the information about which routine is
calling which subroutine is lost.

Quipper [145], a quantum computing framework written in Haskell, has been created specifi-
cally to perform resource estimations on huge quantum circuits in an efficient manner. However,
even though very efficient, the Quipper framework seems limited to compute simple features such
as the total number of gates, total number of qubits or total number of ancillary qubits.

Finally, Q# has some interesting proofs of concepts on one specific implementation of Shor’s
algorithm. Using Q# Trace Simulator, a Flame graph [146] exporter has been built. This
exporter is only able to count one type of gate from a fixed set.

Each of the four examples provided in this section are limited to one specific quantum com-
puting framework and cannot be easily re-used to analyse quantum circuits built with other
frameworks. Moreover, half of the frameworks are only performing a shallow exploration, stop-
ping at the first level (i.e. stopping at the subroutines called directly by the profiled routine and
not recursing into deeper subroutines). Finally, none of the profiling features provided by the
four frameworks presented above have a direct way to deal with gates of variable execution time
that can be found in real hardware.

Note 10. Q# profiles quantum programs by “executing” them on a fake quantum processor
that will track and record data on the execution of the quantum program. Consequently, Q#
profiler should, in theory, be capable of handling dynamic quantum circuits (quantum circuits
that contains quantum measurements and that adapt the gates executed according to the mea-
surement result). Due to its static approach, and as discussed in Section 4.6.6, qprof is not able
to analyse dynamic quantum circuits yet.

4.3 How does qprof works?

4.3.1 General structure

The general structure of qprof is composed of 3 main parts that interact with each other: a
framework-agnostic quantum circuit representation, core data structures and logic, and several
exporters. The framework-agnostic representation of a quantum circuit has been packaged in
another Python package named qcw.

The overall workflow of qprof is schematically explained in Figure 4.2. In this workflow,
qprof can be seen as a black-box that takes a “quantum circuit” as input and returns a “profiler
report”. This black-box view should be enough for users that only want to use the qprof tool,
but experienced users or plugins developers might need more details on the internals of qprof in
order to understand how it works.

The following sections will introduce in details the three different parts that compose qprof.
Section 4.3.2 describes qcw and the framework-agnostic quantum circuit representation it pro-
vides and that is used by qprof. A description of the core data structures and core logic is then
provided in Section 4.3.3. Finally an explanation of the different exporters natively provided by
qprof is given in Section 4.3.4.

4.3.2 The qcw package

The qprof tool aims at being the standard for profiling quantum circuits, independently of the
framework they are written with. In order to be versatile and support as many current and future
quantum computing frameworks as possible, qprof has been split into two packages: qprof
that implements all the profiling logic and exporters and qcw that is responsible of adapting the
different framework-specific quantum circuit formats into a standardised representation. This
section presents the qcw package.

74 Chapter 4. qprof

Framework-specific
quantum circuit

Framework-agnostic
quantum circuit

Call-graphProfiler report

Framework
plugins

Core logic

Exporters

qprof internals

qcw

qp
ro

f.p
ro

fil
e

Figure 4.2: Schematic representation of qprof workflow. Internally, qprof uses qcw to recover a
framework-agnostic representation of the quantum circuit. Then, this “universal” representation is used
to profile the given quantum circuit. Finally the profiling results are exported using one of qprof exporters
and returned to the user.

The qcw package

qprof extensibility is achieved via a companion Python package called qcw and whose purpose
is to abstract away all the specificities of the framework used to represent the quantum circuit
and provide a unified interface for all the implemented frameworks. To fulfil its goals of being
framework-agnostic and easily extensible, qcw provides a plugin mechanism that allows anyone
to implement a wrapper for a specific framework and make it available through the qcw package.
This high-extensibility is obtained thanks to the fact that plugins do not have to be part of the
main qcw package to be recognised by qcw: they can be developed, used and published by
anyone. This allows several situations that may help improving qcw (and consequently qprof)
compatibility with quantum computing framework and extensibility. For example, users might
decide to roll-out their own plugin to support a new framework they are using internally. Another
important situation that is made possible by qcw and its architecture is that framework vendors
have the opportunity to provide a qcw plugin along with their framework and to maintain it as
an official plugin, effectively making qprof compatible with their framework without having to
support a code base outside of their framework.

Finally, such an architecture based on an external package that accept plugins allows the
user to only install the plugins and frameworks needed instead of installing all of them along
with qprof. This simple side improvement greatly reduces the installation time, installation
size and plugin discovery time as it avoids installing and loading unused quantum computing
frameworks.

Framework support

The goal of qcw is to provide a unique interface to access information about quantum programs
that can be written using a variety of different frameworks. Taking into account that several
of the most successful quantum computing frameworks such as Qiskit, Cirq, PyQuil or myQLM
are Python libraries, and in order to ease its integration with these already existing frameworks,
qcw has naturally been designed as a Python library too. It is important to note that this does
not impede the capacity of qcw to support non-Python frameworks such as XACC, QCOR, Q#
or Quipper.

4.3. How does qprof works? 75

qiskit.QuantumCircuit

qat.lang.AQASM.gates.AbstractGate

RoutineWrapper
__init__(framework_circuit)
name() -> str
is_base() -> bool
__iter__() -> iterator

qprof processing

qiskit plugin

framework plugin

my
ql

m plu
gin

unique
interface

Figure 4.3: Schematic overview of the framework architecture used in qcw. Each framework-specific
representation is wrapped by a RoutineWrapper. Each supported framework should have a correspond-
ing qcw plugin that implements the RoutineWrapper interface. The __init__ method initialises a
RoutineWrapper instance with an instance of the framework-specific quantum circuit representation. The
name method returns the name of the currently wrapped routine. is_base returns True if the routine is
a native routine as defined in Definition 14, else it returns False. Finally, the __iter__ method returns
an object that can be iterated on and whose iterates are the different subroutines called by the current
routine.

In order to be as generic as possible, qcw uses an abstract common interface to represent the
concept of “quantum (sub)routine”. This concept is formally defined in Definitions 12 to 14.

Definition 12. Quantum routine: a possibly parameterised, named, sequence of quantum sub-
routines.

Definition 13. Quantum subroutine: a quantum routine that is part of a higher-level quantum
routine (i.e. that is called by another quantum routine).

Definition 14. Native quantum subroutine: a quantum routine that represents a native hard-
ware operation and that does not call any quantum subroutine.

Using Definitions 12 to 14, a common interface for the concept of “quantum routine” emerges.
First, a quantum routine should have a name that can be retrieved. Secondly, we should be
able to distinguish between native quantum routines and non-native ones. Finally, for each
non-native quantum routines, we need a way to iterate over all the subroutines composing it.

This interface, schematised in Figure 4.3, is the core abstraction layer of qcw that allows it
to be as independent as possible from the underlying quantum computing framework used to
represent the profiled quantum circuit and to provide a unified interface across a wide range of
different frameworks.

Currently, qcw has been used to successfully access quantum circuits built with the Qiskit
and myQLM frameworks. OpenQASM 2.0 support is also implemented using Qiskit translation
capabilities by building a qiskit.QuantumCircuit instance from the given OpenQASM 2.0 code
and using the Qiskit wrapper of qcw. Using the same idea, an experimental XACC wrapper
has been implemented by exporting XACC code to OpenQASM 2.0. Finally, Q# and Quipper
support is currently being envisioned and should be implementable as both framework implement
either Python bindings or a method to export to OpenQASM 2.0 code.

4.3.3 Core data structures and logic

Now that the issue of adapting qprof to the various quantum computing frameworks has been
solved, we can start considering the main problem of profiling a quantum circuit.

Section 4.3.3 introduces the different quantities that might be interesting to include in a
quantum program profiling report, comparing with classical computing quantities when ap-
propriate. Then, Section 4.3.3 explains the main graphical representation used through this

76 Chapter 4. qprof

chapter and in qprof: the call-graph representation. Finally, Section 4.3.3 introduce respectively
the data-structures and the algorithms used internally by qprof to profile a quantum circuit
implementation.

Interesting data to profile

Profiling a program is the action of gathering data on its execution. For classical programs
and profilers, the list of data that can be gathered is quite extensive ranging from high-level
quantities such as the time spent in a given function or the memory used during the program
execution to low-level information recovered via hardware counters such as cache misses or
branch-prediction-misses.

But for quantum computing, the quantities of interest need to be adapted as several classical
data such as cache-miss or branch-prediction-miss do not have any meaning anymore. Never-
theless some classical quantities have a quantum analogue that may be useful for optimisation
purposes.

This is the case for the classical “instruction number” quantity, that translates trivially to
its quantum counterpart “native gate number” (or “hardware gate number”). The number of
native gates executed by a quantum routine is a useful information for several reasons: it is
simple, the routine worst-case execution time can be computed from it and a lower-bound of
the routine error rate can also be devised using this information.

Another classical quantity that can be translated to quantum computing is the “time spent
in routine”. This quantity can be subdivided in two more specific figures: the “time spent
exclusively in routine” (sometimes called “self time”) and the “time spent in subroutines called
by the routine”. This separation is often done in classical profiling programs as having these two
execution times gives very useful information about the profiled routine that cannot be obtained
from the “time spent in routine” only.

The last classical quantity with a meaningful quantum counterpart is the “memory usage”,
which may be translated as “number of qubits needed” when using quantum computers.

About quantities without a clear classical parallel but potentially useful, one can cite the
“routine depth” as an approximation of the total execution time of the routine, the “T-count” for
error-correction estimates, the “idle time” to estimate the potential effects of qubit decoherence
on the routine, the needed “chip topology” in order to execute the routine, the “quantum gate
parallelism” the implementation is able to reach, etc.

Graph representation (call-graph)

Following Definitions 12 to 14 and the RoutineWrapper interface we defined in Section 4.3.2,
a graph-like representation of a quantum program seems to be particularly well suited. In this
representation, nodes are quantum routines and an oriented edge from node A to node B means
that the quantum routine represented by A calls the quantum subroutine represented by B. This
representation of a program is called a call-graph in classical computing.

Figure 4.4 shows a call-graph representation of one possible implementation of Grover’s
algorithm. Even though this representation is valid according to the general definition of a
call-graph, it contains a lot of redundant information that scrambles the useful data in visual
noise. Because of this, most of the call graph representations avoid the duplication of nodes, i.e.
create one node for a specific routine and re-use this node whenever the routine is called.

Figure 4.5 shows another possible call-graph representation of the same implementation of
Grover’s algorithm. Here, a graph node represents a unique routine and is re-used whenever
this routine is called.

4.3. How does qprof works? 77

Grover’s algorithm

H … H oracle diffusion

X … X ccx ccx X H … H X … X CnX X … X H … H

Figure 4.4: Call-graph representation of one possible implementation of Grover’s algorithm. Dashed
squares with dots within them mean a repetition of the two gates around the dashed node. Dashed arrows
starting from the two ccx nodes and the CnX node represent a sub-graph that has not been included here
for readability reasons.

Grover’s algorithm

oracle diffusion

ccx X CnX H

×1 ×
1

×
n

×2

×
(n
+
1)

×2n

×
1

×2n

Figure 4.5: Call-graph representation of one possible implementation of Grover’s algorithm. Each node
represents one routine rather than one call to the routine. Edges have been regrouped and labelled with
the number of calls for readability purposes. In the internal representation used by qprof, edges are not
regrouped and are ordered to account for the original quantum program subroutine call order.

78 Chapter 4. qprof

RoutineNode
subroutines: List[RoutineNode]
cost: double
T-count: integer
topology: Topology

Figure 4.6: Example of a possible RoutineNode containing information on the cost, the T -count and
the required topology of the routine it represents. Text on the left of each line represents the name of
the stored information and is followed by the type that stores this information. RoutineNode instances
always store a (possibly empty) list of subroutines that are called by the represented routine. This list
encodes the edges of the call-graph, i.e. if the RoutineNode A has B in its subroutines, an edge from
A to B will be present in the call-graph.

RoutineWrapper
__init__(framework_circuit)
name() -> str
is_base() -> bool
__iter__() -> iterator
__eq__(other_routine) -> bool
__hash__() -> int

Figure 4.7: Final RoutineWrapper interface. __init__, name, is_base and __iter__ methods are
described in Figure 4.3. The __eq__ method tests if other_routine is equal to the current instance.
__hash__ computes an integer hash of the currently wrapped routine.

Data structures

To profile a given quantum circuit (or equivalently a given call-graph), qprof will naturally have
to explore it and gather data through the exploration. The exploration is performed using a
data structure inspired from graph exploration: RoutineNode.

A RoutineNode represents one node of the call graph (i.e. one routine of the quantum circuit)
and stores information about the represented node. An example of a possible RoutineNode is
given in Figure 4.6.

In order to be as efficient as possible on a wide class of quantum circuits, qprof does its best
to reduce the number of call-graph nodes it has to explore. To do so, qprof caches instances of
RoutineNode: the first time a routine is seen, its corresponding RoutineNode will be created
and saved in order to be re-used without having to re-create the RoutineNode instance each
time the routine is encountered.

This cache mechanism is implemented using a factory pattern: a RoutineNode should
only be created indirectly through a dedicated RoutineNodeFactory instance. The
RoutineNodeFactory instance keeps track of all the RoutineNode it has already created and
implements the cache using Python dict data structure, internally implemented as a hash ta-
ble. The cache implemented by RoutineNodeFactory has no maximum size, meaning that it
will keep each RoutineNode instance created. This absence of cache invalidation is not an issue
as every cached routine is already present in the profiled quantum circuit, meaning that qprof
memory usage is at worst equivalent to the profiled quantum circuit memory usage.

Due to the requirements of the hash table data structure, RoutineNode instances should be
hashable and comparable with other RoutineNode instances. These requirements are offloaded
by qprof to the qcw RoutineWrapper data structure to leave the possibility to use hash and equal-
ity operators provided by the wrapped framework. The final interface of the RoutineWrapper
data structure is shown in Figure 4.7.

Note 11. The implementation of the hash and equality operators should be performed with
care as their characteristics are crucial for qprof runtime and accuracy. The main requirements
are imposed by the hash table data structure used by qprof: hash and equality operators should

4.3. How does qprof works? 79

BaseExporter
__init__(**args)
export(RoutineNode) -> Any

Figure 4.8: Exporter interface. Any plugin that implements an exporter should be a derived from the
BaseExporter class and implement this interface. The return type of the export method is not specified
and can be anything. The main profile function will return the output of the exporter.

have a complexity in O (1), and the hash operator should have the best quality possible (i.e. the
lowest collision rate possible).

Implementing correct hash and equality operations with a complexity of O (1) may be non-
trivial, as the constant complexity requirements prevents the operators from exploring each of
the gates contained in the tested routine. qcw implements the hash and equality operators using
the name and the parameters of the routine at hand, with the assumption that two routines with
the same name and the same parameters will contain exactly the same gates (and consequently,
are equal). This assumption might be invalidated in the case of randomised routines.

qprof algorithms

The main procedure and only function accessible from qprof interface, qprof.profile, is de-
scribed in Algorithm 1.

Algorithm 1: qprof.profile, the main qprof function
Input: main_routine a quantum circuit, gate_costs a dictionary-like

data-structure storing the cost for each native quantum gate, exporter the
qprof exporter to use, framework_arguments arguments forwarded to the
quantum computing framework used to represent main_routine

Output: exporter_report the report returned by the given exporter
1 factory ← new RoutineNodeFactory() ;
2 qcw_routine ← qcw.Routine(main_routine, framework_arguments) ;
3 tree_root ← factory.get(qcw_routine, gate_costs) ;
4 return exporter.export(tree_root) ;

This procedure calls the method RoutineNodeFactory.get that is detailed in Algorithm 2.
A study of the runtime complexity of Algorithm 2 is provided in Section 4.4.1.

Algorithms used by the different exporters to summarise the call-graph built with
RoutineNode instances may use internal data structures and other algorithms in order to gen-
erate a report. These are specific to the exporter and Section 4.3.4 gives an example with some
details and a description of the data structure used by the gprof-compatible exporter along
with the limitation it imposes to the quantum circuits that can be handled by the exporter.

4.3.4 Exporters

qprof also implement several exporters that will transform the abstract quantum program rep-
resentation described in Section 4.3.3 to a more usable format.

Exporters should implement a specific interface schematised in Figure 4.8. qprof natively
implements two textual exporters: one that outputs a gprof-compatible format and another
that returns a JSON-formatted string that directly represents a flat call-tree structure used
internally by the qprof exporter.

80 Chapter 4. qprof

Algorithm 2: factory.get, qprof processing applied for each node of the call-graph.
Gate cost is the only information computed by qprof for the moment. Making qprof
compatible with other information such as topology or program parallelism will require
to update this algorithm.
Input: routine a quantum circuit wrapped by qcw, factory a qcw routine factory,

gate_costs a dictionary-like data-structure storing the cost for each native
quantum gate

Output: routine_node an instance of RoutineNode, the internal qprof data
structure to represent one node of the call-graph

/* 1. Try to find the routine in the cache and return it if found */
1 if routine in factory.cache then
2 return factory.cache[routine] ;
3 end
/* 2. The node has never been encountered yet, build it and add it to

the cache */
4 routine_node ← RoutineNode() ;
5 routine_node.self_cost ← 0 ;
6 routine_node.subroutine_costs ← 0 ;
7 routine_node.subroutines ← list () ;
8 routine_node.routine_name ← routine.name() ;
/* 3. Test if the explored node is a leaf (native gate) */

9 if routine_node.routine_name in gate_costs or routine.is_base() then
10 routine_node.self_cost ← gate_costs[routine_node.routine_name] ;
11 return routine_node ;
12 end

/* 4. Else, if the explored node is not a leaf, recurse into its
children */

13 foreach subroutine in routine.__iter__() do
14 child_node ← factory.get(subroutine, gate_costs) ;
15 routine_node.subroutines.append(child_node) ;

/* Important note: the following line assumes that the “cost” is an
additive quantity. It will have to be updated for non-additive
quantities such as error rates or topology. */

16 routine_node.subroutine_costs ← routine_node.subroutine_costs +
child_node.self_cost + child_node.subroutine_costs ;

17 end
/* 5. Update the cache with the computed routine before returning */

18 factory.cache[routine] ← routine_node ;
19 return routine_node ;

4.3. How does qprof works? 81

Flat call-tree representation

Before the profiler report generation, it is convenient to summarise the information contained
in the generic call-graph structure presented in Section 4.3.3. To do so, the gprof and JSON
exporters both rely on a flat structure that represents a directed call-tree (i.e. a directed call-
graph without loops).

This structure puts an additional restriction to the quantum programs that can be profiled
using these exporters: the interdiction to have recursive subroutines (a subroutine that ends up
calling itself). It is important to realise that this restriction does not have a huge impact on
the area of application of qprof because, as of today, recursive subroutine calls do not seem to
be widespread in quantum computing programs and the restriction only applies to the gprof
and JSON exporters, the core logic of qprof being capable of handling recursive subroutine calls
without any issue.

The flat call-tree structure stores, for each subroutine A encountered in the call-graph ex-
ploration, a list of all the subroutines B called by A. Along with each called subroutine B, the
structure stores the number of times B has been called by A and the cost associated with these
calls. Finally, in order to simplify the report generation, each called routine B will also store a
list of the routines A it has been called by. Within this list is also stored the number of calls to
B that have been performed from each A and the cost associated with these calls.

gprof output

The gprof exporter aims at generating a profiler report that is compatible with the profiler
report returned by gprof, a well-known classical profiler. Being compatible with a tool that has
been around for decades and is still actively used has several advantages.

First and foremost, the fact that a tool that has been stable for decades and is still actively
used shows that it provides satisfaction to its users, meaning that the output format includes
enough information and is sufficiently easy to read and use in practice.

Secondly, a decades-old, largely used, output format is likely to have a lot of official or user-
contributed tools to help analysing and representing it in the best way possible. This is the case
for the gprof format that can be translated to a call-graph using the gprof2dot tool and the
dot executable from Graphviz library.

Finally, the gprof output is simple to generate: it is a textual file with a simple and regular
format.

Reading a gprof-based call-graph

As explained in Section 4.3.4, gprof output (and qprof output when used with the gprof-
compatible exporter) can be visualised as a call-graph using the gprof2dot tool and the dot
executable from the Graphviz library. Such a call-graph is depicted in Figure 4.9.

Each node of the graph represents a unique quantum routine. The name of this quantum
routine can be read on the first line of text inside the node. The second line of text in the node
is the percentage of the total cost associated with the routine represented by the node, including
the cost of subroutines called by the routine (also called total_time when the considered cost
is the execution time). The third line represents the total cost of the routine represented by
the node, but excluding subroutines (also called self_time when the considered cost is the
execution time). The fourth line represents the number of times the routine is called in the
program. Finally, each node is coloured according to the total time spent in the routine it
represents from dark-red for high-cost routines to light-green for low-cost routines.

Each directed edge of the graph represents a subroutine call: if a directed edge that goes from
node parent to node child is present, it means that the routine represented by node parent is
calling the subroutine represented by node child at least once. Each edge is annotated with the

82 Chapter 4. qprof

1.09%
2×

98.91%
6×

0.00%
3×

0.00%
4×

1.09%
2×

0.00%
3×

0.00%
4×

ccx
100.00%
(0.00%)

1×

h
1.09%

(0.00%)
2×

cx
98.91%

(98.91%)
6×

tdg
0.00%

(0.00%)
3×

t
0.00%

(0.00%)
4×

u2
1.09%

(1.09%)
2×

u1
0.00%

(0.00%)
7×

Figure 4.9: Example of a simple call-graph generated with the help of gprof2dot and the dot tool from
the Graphviz library.

4.4. Complexity and runtime analysis 83

H T † T

T

T † T

T

T †

H

Figure 4.10: Standard representation of a quantum circuit. Time goes from left to right, giving the
order in which quantum gates are applied. Horizontal lines represent qubits. Gates are represented by
rectangles, with the notable exception of the CNOT gates that has a control qubit (small black dot) and a
target qubit (circle with a cross in the inside) linked together by a straight line.

percentage of the total cost transferred from parent to child (i.e. the cost that was consumed
calling child from within parent) and the number of times parent is calling child.

With these definitions, and provided that the cost used is an additive quantity, the main
routine will always have an execution time of 100% and the sum of the percentages of each
outgoing edge of a given node should be equal to the total_time of this node.

Advantages of the call-graph visualisation

There are several advantages to the call-graph representation used in Figure 4.9 when compared
to the other possible representations of a quantum circuit.

One of the most widespread way of representing a quantum circuit in the quantum computing
community is depicted in Figure 4.10. This representation has the advantage of being simple
to understand and precise with respect to which quantum operation should be applied and
when. One of the disadvantages of this representation is that it becomes quickly unreadable for
quantum circuits containing a lot of quantum gates. It is also a shallow representation: the only
way of representing a main quantum circuit C that calls the subroutine R without inlining the
call to R in C is by representing C and R separately. This becomes quickly unmanageable for
complex quantum circuits that may call tens of nested subroutines.

The call-graph representation has the advantage of complementing the standard quantum
circuit representation of Figure 4.10: its main strength is its ability to represent very large
and deeply nested quantum circuits in one synthetic and concise graph, providing a readable
and global representation of the whole quantum circuit. In the call-graph representation, all
the routines of the profiled quantum circuit are represented and the relationship between each
routine (which one calls and which one is called) is explicit.

4.4 Complexity and runtime analysis

4.4.1 Asymptotic complexity of qprof

The runtime efficiency of qprof is one of its strength: it will be very efficient on most of real-world
quantum circuit implementation.

Let first recall that qprof only access a quantum circuit through the interface provided by
qcw and summarised in Figure 4.7. This means that computing the asymptotic complexity of
profiling a given quantum circuit depends on the complexity of the qcw methods and on the
number of call to such methods qprof needs to perform.

Algorithm 2 details the algorithm used by qprof to initialise its internal data structures. This
algorithm is only applied once, on the routine to profile (the call-graph root, i.e. the only node
that does not have any incoming edge), and then recurses into the call graph to explore all the
nodes needed.

84 Chapter 4. qprof

qcw interface is implicitly or explicitly called on six lines of Algorithm 2. First on lines 1 and
2, the hash and equality operators are called in order to perform hash table operations. Then,
on line 8, the name of the currently explored routine is retrieved once. A test to check if the
routine is considered as “native” is performed with a call to the is_base method at line 9. The
for-loop on line 13 is also calling the __iter__ method once. Finally, line 18 is calling the hash
and equality operators again to add an entry in the cache implemented as a hash table.

Note 12. The __iter__ method is only called once but will iterate over all the subroutines of
the current routine even those that have already been seen and cached by qprof. The already
cached subroutines will simply end the recursion for this branch of the call-graph in the call to
factory.get without exploring their subroutines.

A summary of the number of calls to the different methods provided by qcw interface is
provided in Table 4.1.

Table 4.1: Number of calls of qprof implementation to the qcw interface for each explored node of the
call-graph. Note that a few optimisations that do not appear on Algorithm 2 for readability purpose have
been performed in the implementation. This table provides the counts of the optimised implementation.
c is a number that depends on the implementation of the hash table and the quality of the hash function
used and that represents the expected average number of equality tests that should be performed at each
access to the hash table. “Nodes” in the last column encompass both “Leafs” and “Non-leafs”.

RoutineWrapper method Leafs, non-cached Non-leafs, non-cached Nodes, cached

name () -> str 1 1 0
is_base () -> bool 1 1 0
__iter__() -> iterator 0 1 (see Note 12) 0
__eq__(other) -> bool c 2c c
__hash__() -> int 1 2 1

Even though c in Table 4.1, the average number of calls to __eq__, seems hard to bound
in general, Python documentation provides guarantees on the asymptotic complexity of the
operations on a dict instance: access and modification of the data structure, which are the 2
operations performed by qprof are O (1) on average and O (n) on amortised worst case. This
mean that for each explored nodes of the call-graph, qprof will only have to perform O (1)
operations on average.

In the end, qprof asymptotic complexity depends entirely on the number of nodes of the call-
graph it needs to explore. This number depends on the profiled circuit and no general formula
that include the number of gates in the profiled quantum circuit can be devised.

To illustrate this claim, two example quantum circuits are provided. Figure 4.11 provides
an example of a quantum circuit that contains only 1 quantum gate but that will require qprof
to visit an arbitrarily large number N of nodes in the call-graph. On the other side, Figure 4.12
shows a quantum circuit that contains N = 2n quantum gates but that will only require qprof
to explore O (log2N) nodes of the call-graph.

We can still have an upper-bound of the number of operations qprof will have to perform on
a given quantum circuit by restricting each routine to call at most Nsubroutine subroutines and by
using the number of unique quantum gates Nu used in the circuit. For example, the quantum cir-
cuit depicted in Figure 4.12b has Nu = 4 because it contains 4 unique gates: {H, 2, 3, 4} and the
quantum circuit depicted in Figure 4.11b has Nu = n unique quantum gates: {H, 2, . . . , n−1, n}.
For a quantum circuit in which routines are restricted to call at most Nsubroutine subroutines,
qprof will explore at most (Nsubroutine ×Nu) nodes of the call-graph.

4.4. Complexity and runtime analysis 85

Algorithm 1: get linear circuit

Input: n an integer
Output: circuit a quantum circuit

1 if n == 1 then
2 return H gate ;
3 end
4 circuit ← empty circuit(name = n) ;
5 circuit.append(get linear circuit(n− 1)) ;
6 return circuit ;

(a) Pseudo-code of the algorithm to generate the
linear quantum circuit.

n

n− 1

. . .

2

H

(b) Call-graph representation of the linear quan-
tum circuit.

Figure 4.11: Example of quantum circuit that contains a constant number of quantum gates (here only
1) but that will require qprof O (n) operations to analyse and output a profile report.

Algorithm 1: get_binary_tree_circuit
Input: n an integer
Output: circuit a quantum circuit

1 if n == 1 then
2 return H gate ;
3 end
4 circuit ← empty_circuit(name = n) ;
5 circuit.append(get_binary_tree_circuit(n− 1)) ;
6 circuit.append(get_binary_tree_circuit(n− 1)) ;
7 return circuit ;

(a) Pseudo-code of the algorithm to generate the
binary_tree quantum circuit.

4

3

2

H H

2

H H

3

2

H H

2

H H

(b) Call-graph representation of the
binary_tree quantum circuit for n = 4.
Nodes drawn in grey are not processed by qprof
thanks to the caching mechanism described in
Section 4.3.3.

Figure 4.12: Example of quantum circuit that contains an exponential number of quantum gates (here
2n) but that will require qprof only O (n) operations to analyse and output a profile report.

86 Chapter 4. qprof

4.4.2 Real-world execution time

We benchmarked the execution time of qprof on several well-known use-cases. These benchmarks
were performed on one core of a Intel Xeon Platinum 8260M cadenced at 2.40GHz. Table 4.2,
Table 4.3 and Table 4.4 give the average and standard deviation of the profiling time for quan-
tum circuits implementing three different use cases. The “Profiling time” and “Saved time”
measurements have been performed 100 times and each table contains the average time and the
standard deviation observed over the 100 executions.

“Saved time” is an estimation of the execution time saved thanks to the caching mechanism
implemented. It is computed by saving the time needed to profile a routine when it is first
encountered and then incrementing a counter by this exact same time each time the routine is
seen again and the cache is used. This methodology tends to produce noisy results because an
imprecision in the first measurement will lead to an accumulation of errors, but the computed
standard deviations are always relatively low compared to the average which is a good indicator
that the obtained “Saved time” is close to the real saved time.

Table 4.2: qprof observed runtime on quantum circuits generated using the quantum circuit described
in [75] and also used in Listing 4.3. The evolve_1d_dirichlet function was used with an evolution time
of 0.1, a desired precision ε = 10−3, a trotter order of 1 and a varying number of discretisation points
given in the N column. The nearly instantaneous generation times have to do with how the myQLM
framework is working: the circuit is generated lazily when needed. Consequently, the Profiling time and
Saved time column also include the time needed to construct the quantum circuits. Profiling time and
Saved time columns provide average ± standard_deviation numbers obtained by profiling 100 times
the generated circuit.

N # Qubit Gate number Generation (s) Profiling time (s) Saved time (s)

23 4 126846 0.000 0.01 ± 0.00 0.82 ± 0.01
24 5 528768 0.000 0.02 ± 0.00 2.99 ± 0.03
25 6 1953720 0.000 0.04 ± 0.01 10.17 ± 0.14
26 7 6773868 0.000 0.09 ± 0.02 33.26 ± 0.31
27 8 22575672 0.000 0.24 ± 0.03 106.92 ± 1.52
28 9 73323792 0.000 0.66 ± 0.03 333.43 ± 4.26
29 10 233816544 0.000 1.90 ± 0.04 1043.10 ± 14.02
210 11 735473520 0.000 5.48 ± 0.07 3215.83 ± 44.62
211 12 2289028896 0.000 15.73 ± 0.15 9914.92 ± 132.58
212 13 7063525944 0.000 45.77 ± 0.42 30473 ± 275
213 14 21643231428 0.000 132.21 ± 1.15 92083 ± 1133
214 15 65922050880 0.000 383.65 ± 6.79 270824 ± 5494

4.5 Code examples and practical applications

This section includes several examples of qprof usage on various quantum circuits ranging from a
simple Toffoli gate decomposition in Section 4.5.1 to more complex algorithm implementations
such as Grover’s algorithm in Section 4.5.2. All these benchmarks are performed on circuits
generated using the qiskit framework. An example of benchmarking a quantum implementation
of a 1-dimensional wave equation solver written using the myQLM framework is finally provided
in Section 4.5.3.

4.5. Code examples and practical applications 87

Table 4.3: qprof observed runtime on quantum circuits generated using the function
qiskit.algorithms.HHL. The linear system matrices were constructed with the function
qiskit.algorithms.linear_solvers.matrices.TridiagonalToeplitz(N , 1, 0.5) and the
right-hand side b has been picked randomly. Profiling time and Saved time columns provide
average± standard_deviation numbers obtained by profiling 100 times the generated circuit.

N # Qubit Gate number Generation (s) Profiling time (s) Saved time (s)

21 5 1049 0.087 0.02 ± 0.01 0.06 ± 0.05
22 9 8759 0.465 0.03 ± 0.00 0.19 ± 0.00
23 13 34866 1.523 0.09 ± 0.02 0.45 ± 0.03
24 16 192104 7.572 0.18 ± 0.00 1.56 ± 0.01
25 20 581170 21.881 0.63 ± 0.09 4.14 ± 0.33
26 24 1744225 63.612 2.09 ± 0.25 11.63 ± 0.79
27 28 4937772 175.546 7.23 ± 0.89 31.41 ± 1.09
28 32 12310383 441.949 25.67 ± 0.73 91.72 ± 3.58
29 36 33471747 1234.263 98.59 ± 0.12 289.60 ± 3.76

Table 4.4: qprof observed runtime on quantum circuits generated using the function
qiskit.algorithms.Shor trying to factor the number N . Profiling time and Saved time columns provide
average± standard_deviation numbers obtained by profiling 100 times the generated circuit.

N # Qubit Gate number Generation (s) Profiling time (s) Saved time (s)

15 18 35049 2.644 0.07 ± 0.00 0.44 ± 0.00
77 30 216651 11.840 0.21 ± 0.03 2.15 ± 0.45
221 34 340817 17.460 0.26 ± 0.00 2.96 ± 0.02
437 38 511039 24.161 0.30 ± 0.00 3.84 ± 0.04
899 42 737301 34.197 0.36 ± 0.00 4.89 ± 0.06
2021 46 1030547 42.204 0.44 ± 0.00 6.69 ± 0.07
4087 50 1402681 58.869 0.51 ± 0.01 8.50 ± 0.10
6557 54 1866567 76.888 0.59 ± 0.16 10.03 ± 1.31
14351 58 2436029 98.285 0.62 ± 0.01 11.29 ± 0.14
30967 62 3125851 109.153 0.73 ± 0.01 14.47 ± 0.12
38021 66 3951777 142.007 0.81 ± 0.01 16.85 ± 0.20

4.5.1 Benchmarking a simple program

One of the most simple quantum program that can be benchmarked is the implementation of a
Toffoli gate. Such a benchmark has the benefit of being simple enough to be studied by hand
which means that we will be able to verify qprof results by hand-computing them.

The decomposition of a Toffoli gate as implemented in the qiskit framework is depicted in
Figure 4.13. A complete example using qprof to profile the default Toffoli gate decomposition
in qiskit is shown in Listing 4.1.

The output of qprof, which is here in a gprof-compatible format, can then be analysed. For
the sake of readability and brevity, the full gprof-compatible profiler report will not be included
verbatim in this chapter and will rather be visualised using the gprof2dot tool that allows
representing gprof reports as call-graphs. The call-graph obtained from the report generated
in Listing 4.1 is depicted in Figure 4.14.

From the call-graph depicted in Figure 4.14, it is clear that the cost of a Toffoli gate comes
from its 6 controlled-X gates, that account for more than 98% of the total execution time. It
is also interesting to note that the T gate, known to be very costly when error-correction is
needed, is “free” on IBM Quantum chips when error-correction is not needed as it is equivalent

88 Chapter 4. qprof

=
H T † T

T

T † T

T

T †

H

Figure 4.13: Standard decomposition of a Toffoli gate into 1− and 2− qubit gates.

Code Listing 4.1: Python code needed to use qprof on the Toffoli gate implementation and save the
profiler report in a gprof-compatible format in a file named toffoli.qprof.
from qiskit import QuantumCircuit
from qprof import profile

Circuit construction
circuit = QuantumCircuit (3, name=" one_ccx_circuit ")
circuit .ccx(0, 1, 2)
Profiling
gate_costs = {"u1": 0, "u2": 10 , "u3": 30 , "u": 30 , "cx": 300}
gprof_output = profile (

circuit , gate_costs , "gprof", include_native_gates =True
)
with open(" toffoli .qprof", "w") as f:

f.write(gprof_output)

100.00%
1×

1.09%
2×

98.91%
6×

0.00%
3×

0.00%
4×

1.09%
2×

0.00%
3×

0.00%
4×

one_ccx_circuit
100.00%
(0.00%)

1×

ccx
100.00%
(0.00%)

1×

h
1.09%

(0.00%)
2×

cx
98.91%

(98.91%)
6×

tdg
0.00%

(0.00%)
3×

t
0.00%

(0.00%)
4×

u2
1.09%

(1.09%)
2×

u1
0.00%

(0.00%)
7×

Figure 4.14: Call-graph for the Toffoli gate implementation. Quantum gates included in the gate_costs
variable (here u, u1, u2, u3 and cx) are considered as native gates. Only native gates have a non-zero
self-time as they are the only gates that are really executed on the hardware.

4.5. Code examples and practical applications 89

Code Listing 4.2: Python code needed to use qprof on the Grover implementation and save the profiler
report in a gprof-compatible format in a file named grover.qprof.
from qiskit . algorithms import AmplificationProblem , Grover
from qiskit . circuit . library import PhaseOracle
from qprof import profile
Circuit construction
oracle = PhaseOracle ("(v0 | ~v1) & (~v2 & v3)")
problem = AmplificationProblem (oracle , is_good_state = oracle . evaluate_bitstring)
grover = Grover (iterations =1)
circuit = grover . construct_circuit (problem)
Profile
gate_costs = {"u1": 0, "u2": 10 , "u3": 30 , "u": 30 , "cx": 300}
gprof_output = profile (circuit , gate_costs , "gprof", include_native_gates =True)
with open(" grover .qprof", "w") as f:

f.write(gprof_output)

to a phase change.

4.5.2 Grover’s algorithm

The Toffoli gate is a good example to start and understand the meaning of qprof’s output but
the end goal of qprof is to be able to profile large and complex quantum circuits. A good first
candidate to show how qprof performs on a more complex circuit is Grover’s algorithm.

In this example we use Grover’s algorithm on four qubits to find the three quantum states
that verify the following formula:

(q0 ∨ ¬q1) ∧ (¬q2 ∧ q3). (4.1)

The only three 4-qubit quantum states verifying Equation (4.1) are |0001〉, |1001〉 and |1101〉,
q0 being the left-most qubit in the bra-ket notation.

The code needed to generate the gprof-compatible output for Grover’s algorithm with the
oracle presented in Equation (4.1) is given in Listing 4.2. The resulting call-graph, included in
Figure 4.15, clearly shows that the controlled-X gate is still the major contributor to the total
cost. But this time, contrarily to the Toffoli example shown in Section 4.5.1, the controlled-X
gate is called by three different subroutines that all contribute significantly to the overall cost:
c3z, ccz and mcx.

Thanks to qprof it is now easy to understand the subroutines that contribute the most to
the total cost. More importantly, the gprof-compatible report and the call-graph representation
give very insightful information about subroutines calls that are crucial for circuit optimisation.
Such information can be used to weight the impact of a given optimisation and then decide
whether or not it is worth applying it.

For example, knowing that the ccz subroutine takes 18.61% of the total time, it is easy
to deduce that a 20% improvement in the implementation of ccz will translate into a tiny
18.61%

5 = 3.72% improvement to the overall cost, which might not be worth the effort. On
the other hand, optimising the c3z subroutine to reduce its cost by 20% improves the overall
cost by 9.22%, which is nearly 10% and might be an interesting optimisation target. Finally,
the call-graph visualisation conveys clearly the information that the cx gate is the most costly
subroutine of the Grover’s circuit, meaning that even a slight optimisation of the cx cost will
have a high impact on the overall implementation cost.

4.5.3 Quantum wave equation solver

Finally, we include in this chapter a more complex example that has been implemented in a
previous work [75] with myQLM, a quantum computing framework maintained by Atos. The

90 Chapter 4. qprof

0.28%
4×

99.72%
1×

1.10%
16×

0.69%
10×

46.52%
1×

1.60%
8×

19.41%
1×

31.49%
1×

0.40%
2×

46.12%
1×

2.80%
14×

0.80%
4×

18.61%
1×

0.14%
2×

3.04%
15×

28.32%
14×

2.83%
14×

2.83%
14×

40.46%
20×

7.08%
35×

1.21%
6×

1.21%
6×

16.18%
8×

Grover circuit
100.00%
(0.00%)

1×

h
1.10%

(0.00%)
16×

Q
99.72%
(0.00%)

1×

u2
1.10%

(1.10%)
16×

c3z_o3
46.52%
(0.00%)

1×

x
2.80%

(0.00%)
14×

ccz_o0
19.41%
(0.00%)

1×

mcx
31.49%
(0.00%)

1×

c3z
46.12%
(0.00%)

1×

u3
2.80%

(2.80%)
14×

ccz
18.61%
(0.00%)

1×

p
7.08%

(0.00%)
35×

cx
84.96%

(84.96%)
42×

u
11.13%

(11.13%)
55×

Figure 4.15: Call-graph for the Grover’s algorithm implementation. Quantum gates included in the
gate_costs variable (here u, u1, u2, u3 and cx) are considered as native gates. Only native gates have a
non-zero self-time as they are the only gates that are really executed on the hardware. Some percentages
might not add up to exactly 100% due to rounding errors.

4.5. Code examples and practical applications 91

Code Listing 4.3: Python code needed to use qprof with the QatHS library, on top of myQLM, and save
the profiler report in a gprof-compatible format in a file named qaths.qprof.
from qaths. applications . wave_equation . evolve_1D_dirichlet import

evolve_1d_dirichlet
from qaths. applications . wave_equation . linking_sets . arithmetic_adder import

get_linking_set as arith_linking_set
from qprof import profile
Circuit generation
time = 0.1
discretisation_size = 2 ** 10
epsilon = 1e-3
trotter_order = 1
routine = evolve_1d_dirichlet (time , discretisation_size , epsilon , trotter_order)
Gate execution time definition
G = {"u1": 0, "u2": 89 , "u3": 178 , "cx": 930}
gate_costs = {

"cu1": 2 * G["cx"] + 2 * G["u1"],
"cu2": 2 * G["cx"] + 2 * G["u3"],
"X": G["u3"],
"H": G["u2"],
"CNOT": G["cx"],
"CCNOT": 6 * G["cx"] + 2 * G["u2"] + 7 * G["u1"],
"CH": 2 * G["cx"] + 2 * G["u3"],
"PH": 3 * G["u1"] + 2 * G["cx"],
"CPH": 3 * G["u1"] + 2 * G["cx"],
"CCPH": None ,

}
gate_costs ["CCPH"] = 3 * gate_costs ["CPH"] + 2 * gate_costs ["CCNOT"]
gate_costs [" CCCNOT "] = 6 * gate_costs ["CCNOT"] + 2 * gate_costs ["cu2"] + 7 *

gate_costs ["cu1"]
Profiling
result = profile (

routine ,
gate_costs ,
linking_set = arith_linking_set (discretisation_size),
exporter ="gprof",

)
with open("qaths.qprof", "w") as f:

f.write(result)

code used to generate the benchmarked quantum program is available at https://gitlab.
com/cerfacs/qaths/.

This example demonstrates that, as can be seen in Listing 4.3, qprof interface stays nearly
the same even though the framework used is now completely different. The only exceptions are
some additional parameters (such as linking_set in Listing 4.3) that are directly forwarded
to the framework plugin used and additional gate definitions in the gate_costs data structure
because of the way gate decomposition is handled in myQLM.

The call graph obtained by running Listing 4.3 is reproduced in Figure 4.16. In order for
the call-graph to be readable on a paper format, negligible subroutines and calls (i.e. nodes
and edges respectively) have been discarded from the graphical representation. The call-graph
clearly shows that most of the execution time is spent in the oracle implementation. Moreover,
multi-controlled-X gates are the major contributors to the total execution time.

https://gitlab.com/cerfacs/qaths/
https://gitlab.com/cerfacs/qaths/

92 Chapter 4. qprof

100.00%
151332×

100.00%
151332×

100.00%
453996×

65.54%
605328×

3.44%
907992×

1.06%
453996×

29.96%
302664×

65.54%
605328×

1.37%
9987912×

2.07%
9987912×

1.04%
1815984×

29.96%
302664×

0.21%
6658608×

18.76%
4237296×

0.24%
1210656×

23.09%
605328×

23.09%
605328×

0.75%
126513552×

24.70%
5750616×

69.28%
1815984×

34.64%
907992×

0.87%
27845088×

23.73%
121670928×

1.59%
50847552×

10.15%
52058208×

57.54%
32687712×

0.62%
19975824×

0.75%
9987912×

1.95%
9987912×

0.12%
19975824×

0.10%
3329304×

6.70%
1513320×

11.55%
302664×

11.55%
302664×

evolve_1d_dirichlet
100.00%
(0.00%)

1×

evolve_1d_dirichlet_no_repetition_no_time_adjustment
100.00%
(0.00%)
151332×

simulate_using_trotter
100.00%
(0.00%)
151332×

simulate_signed_integer_weighted_hamiltonian
100.00%
(0.00%)
453996×

oracle1
65.54%
(0.00%)
605328×

A
3.44%

(0.00%)
907992×

exp_ZZFt
1.06%

(0.00%)
453996×

oracle2
29.96%
(0.00%)
302664×

oracle_dirichlet1_1d_wave_equation
65.54%
(0.00%)
605328×

W
1.37%

(0.00%)
9987912×

toffoli_10
2.07%

(0.00%)
9987912×

CCPH
1.04%

(1.04%)
1815984×

oracle_dirichlet2_1d_wave_equation
29.96%
(0.00%)
302664×

CNOT
3.39%

(3.39%)
108656376×

compare_const
25.45%
(0.00%)

5750616×

CCNOT
36.25%

(36.25%)
185835696×

Cadd_const
69.28%
(0.00%)

1815984×

Csub_const
34.64%
(0.00%)
907992×

X
1.04%

(1.04%)
173729136×

high_bit_compute
24.70%
(0.00%)

5750616×

CADD_CONST
69.28%
(0.00%)

1815984×

CCCNOT
57.54%

(57.54%)
32687712×

CH
0.75%

(0.75%)
9987912×

Figure 4.16: Call-graph of the quantum wave equation solver. Nodes (i.e. quantum routines) that
account for less than 0.5% of the total execution time are not plotted. Edges (i.e. subroutine calls) that
account for 0.1% or less of the total execution time are also discarded for readability purposes.

4.6. Discussion 93

4.6 Discussion

Now that we have described qprof internals and how to use it on quantum circuits, we can
compare the insights it provides with the current state-of-the-art. We also discuss the current
limitations of the tool and potential improvements that could be added in the future.

4.6.1 Comparison with the state-of-the-art

A description of the profiling or resource estimate capabilities of several widely used quantum
computing frameworks have been provided in Section 4.2.2.

One of the first advantages provided by qprof comparatively with the frameworks presented
in Section 4.2.2 is its framework agnostic interface. As explained in Section 4.3.2 and shown in
Listings 4.1 to 4.3, qprof can handle nearly transparently different quantum computing frame-
works and provide a standardised report. The fact that qprof has been architectured as shown
in Figure 4.2 allows it to decouple entirely the framework used to represent the profiled quantum
circuit from the output format. It means that if a new exporter is implemented in the future, it
will be available for all the implemented frameworks. Conversely, if a new framework adapter
is added to qcw, qprof will directly be able to generate reports using all the already existing
exporters. This decoupling, crucial due to the increasing number of quantum computing frame-
works, has not been implemented by any of the existing resource estimation features listed in
Section 4.2.2, each framework providing features that are only compatible with its own quantum
circuit representation.

Additionally qprof already provides a more detailed report than most of the quantum com-
puting frameworks listed in Section 4.2.2. The Q# Flame graph exporter provides the same
type of information by using a different visualisation format (Flame graphs [146]) but seems to
be less flexible than qprof with respect to the quantities that can be profiled.

4.6.2 qprof and quantum circuit compilation

qprof might be used to understand the impact of quantum compilation on a given quantum
circuit provided that the compilation tool-chain used does not destroy the call-graph structure
of the quantum circuit.

One of the only strong requirement of the qprof tool is that the quantum circuit provided
can be explored using the unified interface provided by qcw. But in order for qprof to generate
a useful report, a few other requirements should be checked.

First, routine names should be informative and human-readable. This requirement seems
trivial at first sight, but quantum program compilers might generate routines, for example
using quantum circuit synthesis algorithms [147–149], and the name attached to the generated
quantum circuit might not be informative at all.

Secondly, and even more importantly, the profiled quantum program should contain enough
information about the routines and subroutines used. Some compilers such as the one used by
Qiskit at the time of writing (version 0.32.1) start the compilation process by flattening the
quantum circuit and unrolling all the quantum gates that are not in the basis provided. As
soon as the quantum circuit has been flattened, all the call-graph information is lost and cannot
be retrieved by qprof anymore, making its report less useful when the profiled circuit has been
flattened.

Figure 4.17 illustrates this issue with an implementation of Shor’s algorithm trying to fac-
torise the number 15: qprof report before the transpilation provides enough information to plot
a meaningful call-graph as shown in Figure 4.17a whereas qprof report for the exact same circuit
but after calling Qiskit transpiler (Figure 4.17b) contains nearly no useful information.

This means that qprof will only interact nicely with compilers if and only if the compiler
used is able to keep relatively untouched the structure of the call-graph. Currently, only a few

94 Chapter 4. qprof

99.53%
1×

99.53%
8×

2.23%
16×

46.64%
32×

2.23%
16×

1.78%
32×

46.64%
32×

0.47%
720×

144×

19.58%
1440×

8.91%
64×

8.91%
64×

0.44%
64×

14.14%
64×

7.07%
32×

7.07%
32×

0.47%
720×

144×

19.58%
1440×

0.44%
64×

1.35%
32×

8.91%
64×

8.91%
64×

0.44%
64×

7.07%
32×

14.14%
64×

7.07%
32×

83.07%
12216×

21.22%
480×

7.07%
160×

21.22%
480×

43.52%
3200×

13.06%
1920×

1.31%
192×

7.07%
160×

Shor(N=15, a=2)
100.00%
(0.00%)

1×

2ˆx mod 15
99.53%
(0.00%)

1×

cmult a mod N
99.53%
(0.00%)

8×

h
0.99%
(0.99%)
1520×

QFT
20.05%
(0.00%)
288×

ccphi add a mod N
46.64%
(0.00%)
32×

QFT dg
20.05%
(0.00%)
288×

cswap
1.78%
(0.00%)
32×

ccphi add a mod N dg
46.64%
(0.00%)
32×

cp
83.07%
(0.00%)
6108×

cx
98.81%
(98.81%)
14532×

ccphi add a
21.22%
(0.00%)
96×

cphi add a
7.07%
(0.00%)
32×

ccphi add a dg
21.22%
(0.00%)
96×

ccx
1.35%
(0.00%)
32×

cphi add a dg
7.07%
(0.00%)
32×

mcphase
56.57%
(0.00%)
1280×

(a) Call-graph obtained on the circuit generated using Qiskit implementation of Shor’s algorithm trying
to factorise 15.

0.00%
17433×

0.30%
1490×

99.70%
46430×

0.00%
1×

0.00%
17433×

0.00%
2980×

0.30%
1490×

0.00%
2980×

Shor(N=15, a=2)
100.00%
(0.00%)

1×

rz
0.00%

(0.00%)
17433×

sx
0.30%

(0.00%)
1490×

cx
99.70%

(99.70%)
46430×

x
0.00%

(0.00%)
1×

u1
0.00%

(0.00%)
20413×

sdg
0.00%

(0.00%)
2980×

h
0.30%

(0.30%)
1490×

(b) Call-graph obtained on the circuit generated using Qiskit implementation of Shor’s algorithm trying
to factorise 15. qiskit.transpile has been used on the generated quantum circuit with ibm_cairo as
the backend and optimisation_level=2.

Figure 4.17: Effect of using Qiskit transpiler on qprof reports. Using Qiskit transpiler flattens the
quantum circuit and effectively replace every routine call that is not in the transpilation basis by equivalent
calls to gates in the transpilation basis, making qprof report less informative and useful. Note that Qiskit
transpiler inserted CX gates in order to make the quantum circuit compliant with ibm_cairo topology,
which is why the gate cost of the cx gate became even more predominant in the transpiled circuit.

4.6. Discussion 95

compilers are able to do so but projects like QCOR [150] may help democratising this approach.
For compilers that check this property, qprof will be able to help visualising the effect of compiler
on the circuit costs by plotting the call-graphs of the original and compiled circuits side by side
and comparing the different costs computed.

4.6.3 qprof and hardware-aware timings

The fact that most of the current compilers are flattening the compiled circuit makes qprof re-
ports less meaningful and informative as shown in Section 4.6.2. Not being able to use compilers
restrict the class of quantum circuits that might be sent to qprof: hardware-compliant circuits
are not likely to be analysed for the moment. This is due to the fact that to get an hardware
compliant circuit, one should either use a compiler, which is not possible yet as discussed earlier,
or build a hardware-compliant circuit directly, which is an exceedingly complex task for large
circuits.

Because hardware-compliant circuits are, for the moment, unlikely to be studied with qprof,
the tool is not yet capable of adapting the costs of a given gate depending on the qubits it is
applied on.

4.6.4 Limitations of the gprof exporter

The main output format for qprof reports are based on the output format of gprof [140, 141] for
several reasons: standard format, widely used during decades, human-readable, availability of
external tools to get visual representations from the textual format, etc. But this output format
is inherently limited to sequential programs, which impose a strong limitation on what it can
represent. When exporting using the gprof-based format, qprof will not take into account gate
parallelism, i.e. as if quantum gates were executed sequentially, one at a time. Trying to take
into account gate parallelism using the gprof-based format leads to percentages not adding up
to 100% which was deemed too confusing to be worth implementing.

4.6.5 qprof and NISQ circuits

qprof is currently only using a limited set of information on the profiled quantum routines. In
particular, even though the information is available through qcw for some frameworks, qprof
ignores on which qubits a particular routine is applied on for the moment.

By extending qcw public interface in Figure 4.7 to include a way to access qubits the routine
is applied on and modifying slightly Algorithm 2 (see comment above line 16) to allow non-
additive quantities to be profiled, qprof would be able to include gate error or topology in its
reports.

The gate error estimation would be a nice addition for NISQ algorithms, even though only
providing a lower bound on the real error that would be observed on hardware due to the
presence of other source of errors such a decoherence, cross-talk or “SPAM” (state preparation
and measurement) errors.

Reporting on topology has its own challenges, one of them being to find a good format for
qprof report as the gprof format is not adapted to include such information.

4.6.6 qprof and dynamical circuits

qprof being a static analyser, it does not support dynamical circuits that may use the result of a
previous quantum operation to determine which is the next quantum gate to execute. Moreover,
the features related to dynamic circuits are still not introduced in a lot of quantum computing
frameworks and, for the frameworks that do implement some of them, are relatively new. As
such, the companion package qcw and the unique interface it provides has not been updated to
include information about dynamic circuits.

96 Chapter 4. qprof

4.7 Conclusion
In this chapter we introduced qprof, an open-source and, to the best of our knowledge, novel
tool that is able to generate profiling reports in well-known formats from a quantum circuit
implementation. Our library is able to natively read quantum circuits from multiple frameworks
— currently Qiskit, myQLM, OpenQASM 2.0 and XACC — and can be easily extended to
support more quantum computing libraries. It generates consistent reports independently of the
underlying framework used. qprof opens new optimisation opportunities for quantum scientists
and programmers by allowing them to view their quantum circuit implementation in a well-
known, synthetic and visual representation.

In this chapter, we presented the main concepts used in the internals of qprof: how is qprof
able to be framework-agnostic thanks to a unique interface provided by qcw, the processing
performed by qprof in order to compute quantities of interest to profile and how exporters are
used to output the profiling report in a usable and convenient format. We then analysed qprof
runtime performance by providing asymptotic complexity estimates, examples of worst- and
best-case quantum circuits, and benchmarked execution times on several well-known quantum
circuit implementations. We also used qprof on three different quantum circuit implementa-
tions of increasing complexity to demonstrate its features: simplicity of use, adaptability and
consistency of the interface and generated reports.

Finally, we discussed potential improvements and limitations of qprof, opening the way for
more development on the library. In the future, we plan to extend the set of supported quantum
computing frameworks. The number of exporters can also be improved to handle different output
formats such as a perf_event [151] compatible format or a Flame graph [146] compatible one,
allowing to easily use new visualisations such as Flame graphs [146].

Supplementary material
The qprof tool is available at https://gitlab.com/qcomputing/qprof/qprof. The different
qcw packages are available at https://gitlab.com/qcomputing/qcw.

https://gitlab.com/qcomputing/qprof/qprof
https://gitlab.com/qcomputing/qcw

Part IV

Targetting NISQ

97

Chapter

5
Hardware aware compiler

In this chapter, we study a critical part of the quantum computing stack: the compiler. We
present an improved algorithm to solve the qubit mapping problem by taking into account
the last calibrations of the targeted quantum chip, making the algorithm “hardware-aware” or
“noise-aware”.

Contents
5.1 Introduction . 99

5.1.1 Motivational examples . 100
5.1.2 Automatically adapting any quantum computation to a given topology . 102
5.1.3 Examples of quantum hardware . 103

5.2 Proposed solution . 104
5.2.1 Hardware-aware SWAP- and Bridge-based heuristic search 104
5.2.2 Initial mapping . 111
5.2.3 Metrics . 113

5.3 Evaluation and comparison of the proposed HA Algorithm 114
5.3.1 Methodology . 114
5.3.2 Experimental results . 115

5.4 Conclusion . 117

5.1 Introduction
In the gate-based model of quantum computations presented in Section 1.2.3, a computation is
represented by a quantum circuit (see Section 1.4.2). In order to perform any computation on
a quantum chip, the quantum circuit describing the computation have to be constructed. The
quantum circuit construction, also known as implementation of the computation, is a task that
is performed manually by programmers with the help of programming languages and libraries.
The task of implementing an algorithm targeting a specific hardware is extremely complex as it
requires to solve a multi-objective optimisation problem manually: the code should be correct
and have to check an often daunting list of requirements imposed by the hardware used, but
also have to be efficient, readable and ideally re-usable easily on other hardware.

This multi-objective optimisation problem often imposes too much constraints on the imple-
mentation to be realistically solvable by a human in a reasonable time. In order to circumvent
this issue and ease the task of programmers (as well as improving their productivity), most of the
constraints have been offloaded to others specialised programs. Classical computing program-
mers of today only have to write a correct and readable code in a given programming language
and the tasks of adapting and optimising this code for a given hardware is mostly left to the
compiler.

As what is witnessed in classical computing, quantum chips also have requirements on the
type of computations that can be executed. A quantum circuit can only be executed on a
given quantum chip if it exclusively uses quantum gates natively implemented by the hardware.

100 Chapter 5. Hardware aware compiler

X

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

Q0

Q1

Q2

Q3

Q4

(a) Implemented quantum circuit

Q0 Q1 Q2

Q3

Q4

(b) ibmq_valencia
topology

X

q0(Q2)

q1(Q0)

q2(Q1)

q3(Q3)

q4(Q4)

Q2

Q0

Q1

Q3

Q4

(c) Compiled quantum circuit

Figure 5.1: A first motivational example for the qubit mapping problem. Here, the targeted hardware
(ibmq_valencia) has the required topology (highlighted in bold) to execute the implemented quantum
computation without any change to the circuit. Small cased labels represent logical qubits and upper
cased labels represent physical qubits (see Definitions 16 and 17).

This simple restriction in appearance has in fact deep implications, effectively making most of
the quantum computations in-executable on hardware. This is due to the fact that the set of
natively implemented quantum gates effectively imposes a hardware “topology”.

Definition 15 (Hardware topology). Any quantum chip has a topology that is induced by the
set of native multi-qubit quantum gates implemented by the hardware. The topology of a given
quantum chip is the set of all the native inter-connections between hardware qubits. In the
special and most widely seen case of hardware providing only 1- and 2-qubit quantum gates, the
topology is defined as the set of pairs of qubits that are natively connected.

The problem of respecting the target hardware topology is archetypal of the kind of problems
that have to be offloaded to an automated third-party program: as each quantum hardware might
have very different topologies, a valid quantum computation on a given hardware is likely to be
invalid on any other quantum hardware due to a topology mismatch, making the implementation
non-portable across chips.

5.1.1 Motivational examples

Simple motivational example

A small and quite simple quantum circuit is depicted in Figure 5.1a. This circuit is composed of
three CNOT gates and one X gate. The three 2-qubit gates are defining the topology required by
the circuit in order to run natively on a given quantum hardware: 4 qubits have to be linearly
connected (or chained) together. This is the case of the quantum chip ibmq_valencia depicted
in Figure 5.1b with the qubits labelled 0, 1, 3 and 4.

Definition 16 (Physical qubit). A piece of hardware that is part of a quantum chip and
implementing a qubit.

Definition 17 (Logical qubit). In the context of this chapter, a logical qubit is represented
by classical computer data (often a quantum register name and an index) and is an abstract
representation of a qubit, not linked with any physical qubit. This abstraction is used to
implement hardware-agnostic quantum computations, leaving all the hardware-aware part to
the compiler.

Note 13. Definition 17 introduces the concept of logical qubit but the naming convention inter-
feres with a most widespread definition in the quantum error correction field. In this chapter,
except if explicitly denoted otherwise, a logical qubit should be read as explained in Definition 17
and does not mean an error-corrected qubit.

5.1. Introduction 101

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

Q0

Q1

Q2

Q3

Q4

(a) Implemented quantum circuit. The last CNOT gate be-
tween Q2 and Q3 is not native and as such cannot be
executed directly.

0 1

2

3

4

(b) Topology required by the quantum cir-
cuit. This graph is not a sub-graph of the
hardware topology from Figure 5.1b.

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

Q0

Q1

Q2

Q3

Q4

(c) One possible output of the compiler. The quantum circuit is now only using
native CNOT gates.

Figure 5.2: A second motivational example for the qubit mapping problem. Here, the targeted hardware
(ibmq_valencia) does not have the required topology to natively execute the implemented quantum com-
putation. Small cased labels represent logical qubits and upper cased labels represent physical qubits (see
Definitions 16 and 17).

As the hardware topology is compatible with the circuit topology, we only have to find a
mapping between logical and physical qubits that makes the physical quantum circuit executable.

Definition 18 (Mapping between logical and physical qubits). In this context, a mapping is a
bijection that associates to each logical qubit in the circuit a physical qubit from the targeted
hardware.

Finding a valid mapping can be reformulated as an instance of the sub-graph isomorphism
problem where we are trying to find a sub-graph of the hardware topology that is isomorph
to the graph representing the topology required by the quantum computation. The sub-graph
isomorphism is a NP-complete problem [152] but there exist algorithms that are efficient for
some instances [153].

More complex motivational example

A more complex motivational example is depicted in Figure 5.2a. In this example, the topology
required by the quantum circuit (depicted in Figure 5.2b) is not compatible with ibmq_valencia
topology (see Figure 5.1b).

Because quantum hardware topology is set and cannot be changed easily, we are left with
only one way of performing the computation represented in Figure 5.2a on the targeted hardware
(ibmq_valencia here): change the computation to an equivalent computation that checks the

102 Chapter 5. Hardware aware compiler

=

Figure 5.3: SWAP gate. This gate exchange the state of 2 qubits.

topology requirements imposed by the hardware. A valuable tool to reach this goal is the SWAP
gate shown in Figure 5.3. The SWAP gate can be used to exchange 2 qubits states, allowing to
change the mapping between logical and physical qubits at the time of execution.

An equivalent quantum circuit that checks the hardware topology is depicted in Figure 5.2c.

5.1.2 Automatically adapting any quantum computation to a given topology

The problem of automatically adapting a quantum computation (i.e., a quantum circuit) to a
given topology has already been studied in several research papers and is a vibrant and active
domain of research.

Two main types of methods have been used in the literature to solve this problem. The
first method consists in reformulating the problem as a mathematically equivalent problem that
can then be solved using a specialised solver. The target mathematically equivalent problem
often uses the formalisms of Integer Linear Programming (ILP) [154–157], Satisfiability Modulo
Theory (SMT) [158, 159], or even Constraint Programming (CP) [160, 161]. These approaches
have the huge advantage of building over well known and studied optimisation problems for
which highly efficient solvers are available. Moreover, most of the solvers available are able to
compute the exact optimal solution to the problem, minimising a cost function that is often
the number of gates added to the quantum circuit to adapt it. However, all these methods are
difficult to scale for larger quantum circuits, either containing more qubits or containing more
quantum gates, and as such suffer from very long runtime even for medium-sized problems. The
second type of methods use heuristic algorithms to adapt the quantum circuit, starting from the
first quantum gate and transforming the circuit sequentially by making each gate one after the
other hardware-compliant.

Most of the previous works [162–166] using the second method are specialised to a nearest-
neighbour connectivity and cannot be directly applied to actual quantum architectures such
as ibmq_valencia or ibmq_almaden that do not have a nearest-neighbour connectivity (Fig-
ures 5.1b and 5.4). More recent work [167–174] introduced approaches and algorithms that are
not restricted to a specific topology. For example, the algorithm presented in [167] uses an
heuristic approach to find the best permutation at each step of the quantum circuit transfor-
mation. Instead of representing a quantum circuit as a fixed sequence of layers like most of
the previous works, [175] introduced a Directed Acyclic Graph (DAG) representation that takes
into account commutativity of quantum gates and their time dependencies. A major improve-
ment has been shown by [169] which uses a “forward-backward-forward” algorithm. Moreover, a
“look-ahead” strategy has been introduced in the heuristic cost function for further optimisation
in some existing works, notably [167, 169–171, 174]. Most of the methods and algorithms cited
only use SWAP gates to adapt the original quantum circuit. A notable exception is [171] that
considered both Bridge and SWAP gates. Finally, most of these works aim at minimising the
number of inserted gates and do not consider the impact a imperfect quantum gates and the
error-rate variations that can be witnessed between different qubits.

The algorithms used in [155, 158, 176–178] try to use calibration data of the targeted quantum
chip in order to insert additional 2-qubit (SWAP) gates between strongly linked qubits, i.e., qubits
that are linked with a low 2-qubit gate error rate. However, these works do not consider a holistic

5.1. Introduction 103

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Figure 5.4: ibmq_almaden topology. Qubits are represented as circles and indexed from 0 to 19. A
connection between two qubits is represented by an edge between the two qubits.

Qubit number 20
Single qubit error rate 2.655e−4 to 9.569e−4

CNOT error rate 8.136e−3 to 3.403e−2

id gate length 35.56 ns
u1 gate length 0 ns
u2 gate length 35.56 ns
u3 gate length 71.11 ns
CNOT gate length 248.88 ns to 860.44 ns
T1 34.66 µs to 139.46 µs
T2 12.16 µs to 200.25 µs

Table 5.1: ibmq_almaden characteristics. Note that the exact hardware characteristics are not constant
and change at each re-calibration of the chip.

view of the problem, either lacking a good and automatic way of “seeding” the solver or using
heuristic methods that are not efficient enough to select the best candidates in some common
cases.

In this work, we follow the second type of methods that consist in developing a heuristic
algorithm to choose the best SWAP to insert based on calibration data. We propose a Hardware-
Aware (HA) heuristic mapping transition algorithm to address the drawbacks mentioned above.
First, we present a mapping transition algorithm that takes into account the hardware topology
and the calibration data to improve the overall output state fidelity and reduce the total execu-
tion time. Second, to reduce the number of additional gates required to map the quantum circuit
to the quantum chip, our algorithm is able to select between a SWAP or Bridge gate. Finally, we
ran our HA algorithm on real quantum hardware and compared it with various other algorithms
from the literature.

5.1.3 Examples of quantum hardware

Figure 5.4 shows the topology, also called coupling graph, of IBM Quantum’s ibmq_almaden, a
20-qubit system. Each vertex represents a qubit and each edge represents the coupling intercon-
nect between the two qubits it links. Table 5.1 lists a summary of the calibration data that have
been extracted from [179] for ibmq_almaden. It includes CNOT error rates, single qubit error
rates, energy relaxation and decoherence characteristic times T1 and T2, and execution time

104 Chapter 5. Hardware aware compiler

(gate length). The calibration data show that the error of the only 2-qubit gate is one order
of magnitude higher than their 1-qubit counterparts. This is also the case for gate execution
times: 2-qubit gates are approximately an order of magnitude slower than 1-qubit gates. For
simplicity and because of the relatively low error rates and execution times of 1-qubit gates
when compared to 2-qubit gates, we focus on 2-qubit gates in this paper.

Moreover, it is important to note that all the interconnects between qubits are not equal.
When looking at the CNOT gate error rate or execution time on ibmq_almaden, the best CNOT
gate has an error rate 4.18 times lower than the worst CNOT and the maximum execution time is
3.46 times longer than the minimum one. Therefore, as rightly noted in [176], we cannot treat
each qubit equally, and we have to consider the topology as well as their error rate. CNOT gates
can be applied in either direction by conjugating with H gates. As we do not consider 1-qubit
gates in this study, we do not have to consider any “native” CNOT direction.

5.2 Proposed solution
Our algorithm improves over the SABRE algorithm presented in [169], which is a SWAP-based
heuristic algorithm to reduce the number of additional CNOT gates. We propose a Hardware-
Aware SWAP- and Bridge-based heuristic search algorithm. Compared to the SABRE algorithm,
which only aims at reducing the number of additional gates, we improve the final circuit fidelity
as well as reduce the number of additional gates by introducing a new distance matrix that
takes into account both the hardware connectivity and the last calibration data available for
the targeted chip. Moreover, SABRE algorithm only uses SWAP gate whereas our algorithm
is able to decide between SWAP and Bridge gates to further reduce the number of additional
gates. Finally, we also develop an initial mapping algorithm called Hardware-aware Simulated
Annealing (HSA) in order to evaluate the mapping transition algorithm of different flavours.

The introduced algorithm takes as input a quantum program written in the OpenQASM
2.0 language [180] and the calibration data of a specific IBM quantum device. During the
compilation process, it considers the hardware constraints such as hardware topology, gate
availability and error rates. Then, the quantum circuit transformation algorithm is applied. It
contains two main parts: a initial mapping algorithm and a mapping transition algorithm. In
the mapping transition step, some optimisations are done to generate a circuit with a better
performance in terms of final state fidelity. The source code is publicly available at https:
//github.com/peachnuts/HA.

We start by explaining our HA algorithm in Section 5.2.1. In Section 5.2.2, we describe the
hardware-aware simulated annealing (HSA) method for initial mapping. Finally, Section 5.2.3
presents the metrics used to evaluate our algorithm.

5.2.1 Hardware-aware SWAP- and Bridge-based heuristic search

Initialisation of the algorithm

The first step of the algorithm is to process the input quantum circuit in order to reformulate
it in a more convenient data format. Starting from the input quantum circuit, we can obtain
a Directed Acyclic Graph (DAG) circuit which represents the operation dependencies in the
quantum circuit without considering the hardware constraints. The DAG is constructed such
that quantum gates are represented by the graph nodes and the directed edge (i, j) between
nodes i and j represents a dependency from gate i to j, i.e., gate i should be executed before j.
Figure 5.5 shows an example of a quantum circuit that is then transformed into a DAG.

Once the DAG is constructed, graph nodes (i.e., quantum gates) can be ordered following
gate dependencies. For example if gate j depends on gate i, then gate i will be ordered before
gate j. One possible ordering that fulfil this property is the well known topological ordering.
Depending on the quantum circuit, a topological ordering might not be unique.

https://github.com/peachnuts/HA
https://github.com/peachnuts/HA

5.2. Proposed solution 105

H T † T

T

T † T

T

T †

H

(a) An example of a quantum circuit.

H

CX

T †
CX

T

CX

T

T †

CX

CX

T

T

T †

H

CX

(b) The DAG representation of the quantum circuit example.

Figure 5.5: Transformation of a quantum circuit to a Directed Acyclic Graph (DAG).

g1

g2

g3

g4

g5

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

F

E

(a) Beginning of the HA map-
ping algorithm. g1 and g2 do
not overlap and are the first
gates in the circuit so they are
in the front layer F . The other
gates are not executable and
are consequently in the extended
layer E.

g1

g2

g3

g4

g5

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

F E

(b) g1 and g2 are compli-
ant with the hardware topology.
They are executed and removed
from F . The gate g3 is pushed
into F as it is now “executable”.
g4 overlaps with (i.e., depends
on) g3 and as such cannot be
inserted in F .

g1

g2

g3

g4

g5

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

F

E

(c) After Bridge insertion, g3
is executed and removed from
F . g4 no longer overlap with
a gate in F and is added to the
front layer. g5 overlaps with g4
and so should stay in E.

Figure 5.6: Evolution of the front (resp. extended) layer F (resp. E) on a simple circuit with a detailed
explanation at each step.

106 Chapter 5. Hardware aware compiler

Quantum gates can then be divided into three groups: the executed gates, the executable
gates, and to be executed future gates. Executed gates are quantum gates that have already
been mapped by the algorithm. Executable gates constitute the front layer, denoted F . A gate
is considered executable when all the gates it depended on are in the executed gates group.
Finally, gates that are not yet executed nor executable are included in the extended layer E.
An illustration of layers E and F is shown in Figure 5.6.

The HA algorithm

The core of the HA algorithm then starts by checking sequentially the quantum gates of the
circuit, following a topological ordering. If the quantum gate currently being checked is natively
executable (i.e., all its predecessors are executed and the gate topology is compatible with the
hardware topology) the algorithm marks this gate as executed and go on to the next gate. Else,
if the gate is not natively executable, it is added to the front layer F . By following a topological
order, the algorithm ensures that for each explored gate, all its predecessors are either executed
or in the front layer. This process is then repeated until no more quantum gate can be added to
the front layer F , i.e., when the currently explored quantum gate has predecessors in the front
layer or when no gate is left to explore.

When the front layer F is full, the HA algorithm calls a heuristic function to choose the best
SWAP or Bridge gate to insert in order to make some of the gates in the front layer executable. If
any gate becomes executable after a SWAP insertion (or if it is executed by inserting a Bridge),
it is removed from the front layer and marked as executed. The algorithm then iterates, adding
gates to the front layer and inserting SWAP or Bridge gate until the quantum circuit is fully
mapped.

The skeleton of the main algorithm can be found in [169, Algorithm 1] with only some minor
adjustments to allow the insertion of Bridge gates that will not change the current mapping,
denoted as π in the algorithm.

The algorithm used to choose what is the best SWAP gate to insert at a given point in the
algorithm as well as select the best candidate between a SWAP and a Bridge gate is based on
a heuristic cost function described in Algorithm 3. In order for this heuristic to work best,
the most recent calibration data should be retrieved through the IBM Quantum Experience or
Qiskit API before each usage of the HA algorithm to ensure that the algorithm has access to
the most accurate and up-to-date information possible.

The heuristic method to insert a SWAP or Bridge starts by constructing a list of all the
candidate SWAP gates, named swap_candidate_list in Algorithm 3, from the quantum gates
in the front layer F and the hardware coupling graph G. Then, for each SWAP candidate a
temporary mapping πtemp is computed with the Map_Update function. The final cost of the
candidate SWAP is computed following Equation (5.5). The SWAP with the minimum score is
selected and called SWAPmin.

The last step is to choose between a SWAP gate or a Bridge gate. A SWAP gate can always
be used, whereas a Bridge gate can only be inserted if a gate in the front layer F becomes
executable from the mapping obtained after applying the SWAPmin gate. If the conditions to
insert a Bridge gate are not met, HA algorithm inserts a SWAP gate. Else, the algorithm decides
the gate (SWAP or Bridge) to insert based on the effect of the SWAP gate on the extended layer E.
The SWAP gate effect is computed with Equation (5.6). A negative effect implies that changing
the mapping with a SWAP gate will have a short-term negative impact in the future, making the
gates in the extended layer harder to adapt. In the case of a negative effect, a Bridge gate,
which does not change the current mapping, is inserted. Otherwise, if adding a SWAP gate has a
positive effect on the extended layer, the algorithm inserts a SWAP gate.

5.2. Proposed solution 107

Algorithm 3: Heuristic algorithm for selecting additional gate candidate
input : Circuit DAG, Coupling graph G, Current mapping πc, Distance matrix D,

Swap matrix S, front layer F , Extended layer E, Weight parameter W
output: New mapping πn, Inserted gate gadd

1 begin
2 Set score to empty list;
3 Set effect to empty list;
4 swap_candidate_list ← FindSwapPairs(F , G);
5 for swap ∈ swap_candidate_list do
6 πtemp ←Map_Update (swap);
7 Hbasic ← 0;
8 for gate ∈ F do
9 Hbasic ← Hbasic + D(gate, πtemp) ;

10 end
11 Hextended ← 0;
12 for gate ∈ E do
13 Hextended ← Hextended + D(gate, πtemp) ;
14 effect_cost ← effect_cost + D(gate, πc) − D(gate, πtemp);
15 end
16 H ← 1

|F |Hbasic + W
|E|Hextended ;

17 score.append(H);
18 effect.append(effect_cost);
19 end
20 Find the swap with minimum score: swapmin;
21 Find the gate in F that become executable by applying swapmin: gs;
22 if effect [swapmin] < 0 and S(gs,πc) = 2 then
23 πn ← πc;
24 gadd ← gB;
25 else
26 πn ← Map_Update (swapmin);
27 gadd ← swapmin;
28 end
29 return πn, gadd;
30 end

108 Chapter 5. Hardware aware compiler

Heuristic cost function for SWAP pairs

A heuristic cost function H is introduced to estimate the cost of each possible (i.e., natively
executable) SWAP pairs at a given step of the iterative algorithm. Its objective is to quantify the
quality of the possible SWAP pairs according to the distance considered and to select the best
SWAP pair.

When inserting a SWAP gate, the circuit is divided into two layers: the front layer F and the
extended layer E. Note that inserting a SWAP gate will not only influence the gates in the front
layer F but also the gates in the extended layer E. The approach of considering the SWAP pair’s
impact on the extended layer is referred as the look-ahead ability. It can contribute to an overall
better performance of the algorithm and depends on the size of the extended layer E.

In order to build the HA algorithm presented in this chapter, we devised several metrics
that can be used to estimate the cost of a SWAP pair. We considered three different distance
matrices: swap matrix S, swap error matrix E and swap execution time matrix T . Because
S, E , and T contain entries with incompatible units and different scales, we update T to make
it dimensionless and each matrix is normalised. Moreover, we introduce weights (α1, α2, and
α3 for S, E , and T , respectively) to allow to choose the importance of each of the parameters:
number of SWAPs, SWAP gate error and SWAP gate execution time.

Matrix S is constructed such that the entry (i, j) stores the distance on the real hardware
between qubit i to a neighbour of qubit j, which is also equal to the minimum number of SWAP
gates needed to move qubit i to qubit j. The matrix is efficiently constructed by using the
Floyd-Warshall algorithm [181].

Matrix E stores in its entry (i, j) the minimum error rate attainable to move the qubit i to a
neighbour of qubit j. The error rate of each possible SWAP is computed based on the calibration
data of the native CNOT gates and the decomposition shown in Figure 5.3.

The success rate of a CNOT between the physical qubits Qi and Qj , denoted by S(Qi, Qj),
is computed from the error rates given in the calibration data. Equation (5.1) computes the
error rate of a SWAP gate between two connected physical qubits Qi and Qj while taking into
account that the swap operation is symmetric. The final E matrix is constructed by using the
Floyd-Warshall algorithm on the graph GE with the computed errors as edge weights.

GE(Qi, Qj) = 1− S(Qi, Qj)× S(Qj , Qi)×max(S(Qi, Qj), S(Qj , Qi)) (5.1)

Matrix T is computed, similarly as S and E , with the Floyd-Warshall algorithm applied
on graph GT but by using the SWAP execution time. This execution time is computed with
Equation (5.2) where t(Qi, Qj) is the execution time of the CNOT gate with Qi as control and Qj
as target, extracted from the calibration data.

GT (Qi, Qj) = t(Qi, Qj) + t(Qj , Qi) + min(t(Qi, Qj), t(Qj , Qi)) (5.2)

The summation of the three matrices forms a new matrix called distance matrix D (shown
in Equation (5.3)). The distance matrix represents the “distance” between each pair of qubits in
the quantum chip. Here, the “distance” means the combination of swap distance, overall error
rate and execution time of the shortest path.

D = α1 × S + α2 × E + α3 × T (5.3)

Inserting a SWAP gate will have an impact on the current mapping πc, changing it to πtemp.
We compute the cost of this SWAP on the front layer F with the cost function Hbasic shown in
Equation (5.4). A small score means that the mapping πtemp makes the hardware topology close
the topology required by the gates in the front layer F . The SWAP pair with the minimum score

5.2. Proposed solution 109

=

Figure 5.7: Implementation of the Bridge gate. This gate can be useful to implement a CNOT between
two qubits that share a common neighbour without changing the current mapping.

is selected as the best candidate.

Hbasic =
∑
g∈F

D[πtemp(g.q1)][πtemp(g.q2)] (5.4)

We also consider the impact of the SWAP pair on the extended layer E. The impact of a
SWAP on the front layer is prioritised over its impact on the extended layer. As a result, a weight
parameter W is added to the extended layer cost to scale its impact. Moreover, the impacts
on the front layer and extended layer are normalised by dividing them with their respective
number of gates. The complete heuristic function including the extended layer E with look-
ahead ability is shown in Equation (5.5). Even though Equation (5.4) and Equation (5.5) are
similar to equations in [169], it is important to note that the distance matrix D is different.

H = Hbasic
|F |

+ W

|E|
∑
g∈E

D[πtemp(g.q1)][πtemp(g.q2)] (5.5)

Heuristic cost function to estimate the effect of SWAP versus Bridge gates

An equally important metric of the HA algorithm is the heuristic cost function that estimates
the usefulness of a SWAP. In some situations (that happen on real topologies and circuits), even
the best SWAP may have a negative impact on the overall circuit. In that case, inspired by [171],
our heuristic function decides to insert a Bridge gate instead of a SWAP gate if the topology
allows it. The decomposition of the Bridge gate with four CNOTs is shown in Figure 5.7. The
Bridge gate allows executing a CNOT between two qubits that share a common neighbour.

It is important to note that using a Bridge gate does not induce an additional cost in term
of gate number when compared to a SWAP gate. Actually, both gates require 4 CNOT gates in
total (for the SWAP gate: 3 gates to implement the SWAP and 1 additional gate to perform the
CNOT). The Bridge gate can only be used to replace a CNOT if the distance between the control
and target qubits (i.e., the minimum number of links between the two qubits) is exactly two.

Figure 5.8a shows an example of quantum circuit that is mapped to ibmq_valencia with
the topology described in Figure 5.1b. The quantum gates g1 and g2 comply with the topology
of the chip, but g3 does not. By evaluating the heuristic cost function H, the SWAP between q0
and q1 is selected. But as shown in Figure 5.8b, the chosen SWAP has a negative impact on the
extended layer: gate g5 is no longer executable and another SWAP gate is required to execute it.

Such situations can be solved by using a Bridge gate instead of a SWAP gate as shown in
Figure 5.8c. Since the distance between the control qubit q0 and the target qubit q3 of gate g3
is 2, we can insert a Bridge gate instead. Using a Bridge gate allows to execute the CNOT gate
g5 without changing the current mapping. Moreover, by using a Bridge gate, we only add three
CNOTs to map the entire circuit, instead of six if only SWAP gates were used.

The decision to insert either a SWAP or a Bridge gate happens only when the cost H of each
SWAP pair is computed and the best SWAP pair has been chosen. Then, two different mappings
are considered: πc, the currently used mapping (i.e., before executing the best SWAP pair or
equivalently the mapping obtained after inserting a Bridge gate), and πtemp, the new mapping
that would be obtained after inserting the best SWAP gate.

110 Chapter 5. Hardware aware compiler

g1

g2

g3

g4

g5

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

(a) Original quantum circuit that should be compiled in order to be executable on ibmq_valencia.
q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

Q0

Q1

Q2

Q3

Q4

(b) Compiled circuit using SWAP gates.

Bridge gate

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

Q0

Q1

Q2

Q3

Q4

(c) Compiled circuit using Bridge gate.

Figure 5.8: An example of a quantum circuit showing the difference between SWAP and Bridge transfor-
mations. Because Q0 and Q3, the two qubits involved in the gate g3, have Q1 as a common neighbour,
both transformations are applicable. Comparing the obtained circuits, the SWAP transformation is more
costly due to the fact that the effect of the first SWAP on the current mapping have to be undone to execute
g5. In this example, the Bridge transformation avoids 3 additional CNOT gates.

The overall effect of the SWAP gate on the extended layer E is computed according to Equa-
tion (5.6):

Effect (πc, πtemp) =
∑
g∈E

D[πc(g.q1)][πc(g.q2)]−D[πtemp(g.q1)][πtemp(g.q2)]. (5.6)

If the effect of the best SWAP gate is negative, this means that the considered SWAP pair has
an overall negative impact on the extended layer E. In this case, we consider that it is better
to keep the current mapping so, if the hardware topology allows it, a Bridge gate is inserted
instead of a SWAP gate.

Runtime analysis

The HA algorithm outperforms SABRE algorithm thanks to several modifications while retain-
ing its low asymptotic complexity. The mapping procedure is separated into two steps: an
initialisation step that is independent of the mapped quantum circuit and a mapping step.

The initialisation step computes the distance matrix that is used afterwards in the mapping
step. In our algorithm, the distance matrix is computed according to Equation (5.3). Each of
S, E and T appearing in the distance matrix D require to use the Floyd-Warshall algorithm
once on the hardware graph G. This means that we need to perform three calls to an algorithm
that scales as O(n3), n being the number of qubits of the targeted quantum chip. Moreover,
the weights used by the Floyd-Warshall algorithm for the matrices E and T should be retrieved
online with Qiskit API. This retrieval is an operation that theoretically takes O(n2) time in the
worst case as we need to retrieve CNOT error rates and execution time for each link. Note that
the current quantum chips only have O(n) links and so the asymptotic complexity of this step
is O(n). Overall, the initialisation step is dominated by the cost of applying the Floyd-Warshall
algorithm, that takes O(n3) time.

After the initialisation step, the actual mapping procedure is applied. Let n be the number
of qubits, g the number of CNOT gates in the mapped quantum circuit and d the diameter of the
chip, i.e., the minimum SWAP distance between the two farthest qubits on the quantum chip. In

5.2. Proposed solution 111

the worst case scenario, all the CNOT gates should be mapped because none of them comply with
the hardware topology. Moreover, all the CNOT gates might need up to d SWAPs in order to become
executable. Finally, for each SWAP insertion we need to execute the heuristic cost function. This
function will need to explore at most n2 links (in the case of an all-to-all connected chip, this
number improves to O(n) on practical quantum chips with a nearest-neighbour connectivity),
where exploring one link might take a time of O(g) if all the CNOT gates are included in either
F or E. In summary, the mapping step takes O(g2dn2) time in the worst case, which can be
improved to O(gn2.5) under reasonable assumptions (nearest-neighbour chip connectivity, i.e.,
d ∈ O(

√
n), and an extended layer E with at most O(n) CNOT gates).

It is important to note that the initialisation step only needs to be repeated when the
calibration data change but that requires to recover data from the Internet which can be a slow
operation (in the order of several seconds).

5.2.2 Initial mapping

Heuristic-based mapping transition algorithms rely crucially on a good initial mapping to achieve
the best results. A well-known algorithm when trying to approximate the global minimum of
a scalar function with a discrete search space is simulated annealing. Simulated annealing is
a meta-heuristic designed to explore the search space by randomly selecting neighbours of the
current state, evaluating them with the provided cost function and evolving in such a way that
the algorithm will not be trapped into local minimums. The simulated annealing algorithm is
depicted in Algorithm 4.

A modified version of simulated annealing has already been applied in [170] where a repetition
parameter R is used to explore several neighbours at each temperature step. The authors
consider a simple get_neighbour function that modifies randomly the current mapping π to
a neighbouring mapping πneighbour. However, get_neighbour function is limited as it is not
aware of the underlying hardware. This means that from the set of mappings generated by this
function and evaluated by the simulated annealing procedure, several mappings can be excluded
even before evaluating the mapping cost.

We aim to improve the initial mapping generated with the simulated annealing procedure
by designing a Hardware-aware Simulated Annealing (HSA) algorithm using a hardware-aware
get_neighbour method to explore the neighbouring mappings. To explore different mappings,
we separate the get_neighbour procedure in three algorithms governed by a top execution
policy. This top layer policy decides which one of the three algorithms the get_neighbour
method should execute to obtain a new mapping. The policy we used randomly chooses which
algorithm to use from the value of a random number.

The first algorithm, called shuffle, does not change the physical qubits involved in the
current mapping but changes how they are mapped to logical qubits. The most straightforward
algorithm that can be used for this task is a random shuffle: we list the physical qubits involved
in the mapping, randomly shuffle them, and obtain a new arbitrary mapping with the same
physical qubits.

The second algorithm, expand, does not change the mapping between physical qubits and
logical ones but replaces one of the physical qubits involved in the mapping by another physical
qubit that is not part of the mapping. Instead of a hardware-unaware expand, we use an
expand algorithm that tries to avoid separating the physical qubits in the current mapping into
two disconnected groups. Moreover, the algorithm encourages re-arrangement of qubits based
on the figure of merit chosen (i.e., final state fidelity, circuit depth, execution time). In this
algorithm, we consider that strongly connected qubits have high fidelity. The hardware-aware
implementation aims to identify the qubits with the least and most connections. Finally, based
on tests related to qubit measurement operations and their communicated error rate, we found
them to be a non-negligible source of errors. To account for theses errors, we add a weight to

112 Chapter 5. Hardware aware compiler

Algorithm 4: Simulated annealing
input : Initial mapping π0, Cost function C, Neighbour computation function

get_neighbour, Initial temperature Tinit, Final temperature Tf , Temperature
evolution constant ∆

output: Best initial mapping found πopt

1 begin
2 π() ← π0();
3 πopt() ← π0();
4 T () ← Tinit();
5 cost() ← C(π);
6 costopt() ← cost;
7 while T () > Tf do
8 πneighbour() ← get_neighbour(π);
9 costneighbour() ← C(πneighbour);

10 if costneighbour() < costopt then
11 costopt() ← costneighbour;
12 πopt() ← πneighbour;
13 end
14 if costneighbour() < cost then
15 cost() ← costneighbour;
16 π() ← πneighbour;
17 else
18 if rand() < exp

(
cost()-costneighbour()

T

)
then

19 cost() ← costneighbour;
20 π() ← πneighbour;
21 end
22 end
23 T () ← T () × ∆;
24 end
25 return πopt;
26 end

5.2. Proposed solution 113

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Figure 5.9: Topology of the ibmq_tokyo quantum chip.

each qubit accounting for its measurement error-rate.

The third algorithm used in the get_neighbour algorithm is called reset. Its purpose is
to give the possibility to the simulated annealing algorithm to escape local-minimums. This
algorithm is needed because the first two algorithms shuffle and expand will likely explore
only the close neighbourhood of the current mapping and may not be able to escape a local
minimum. To avoid being stuck, the reset algorithm tries to find a potentially good new initial
mapping from a randomly chosen qubit, without considering the previously explored mappings.
The algorithm starts with a random qubit and expands the mapping by iteratively weighting all
the qubits and adding the best qubit to the new mapping.

5.2.3 Metrics

In order to evaluate the efficiency of HA algorithm over the state of the art, metrics have to
used.

The first metric used to compare the algorithms is the success rate of the different mapped
quantum circuit on a given hardware. The success rate of a quantum circuit is the frequency
of correct outputs over a large number of repetitions. This metric can only be used when the
quantum circuit used for the benchmark has a pure quantum state as expected output. We
computed the success rate over 8192 repetitions.

The second metric chosen is the additional number of CNOT gates. This metric is tightly
linked with the total number of SWAP/Bridge gates inserted and is often a good and easy to
compute proxy metric for the success rate due to the high error rate of CNOT gates.

The third metric is the total execution time of the circuit. As the execution time of each
CNOT gate can be extracted from [179], we can estimate the overall execution time of a given
circuit. This metric is important for several reasons. First, it shows the ability of the mapping
algorithm to schedule gates in parallel when possible and how good is the algorithm at doing this.
Secondly, it allows us to have an idea of the importance of decoherence noise in the computed
fidelity. For each qubit, the execution time is computed by adding the total execution time of
gate operations acting on it. The longest qubit execution time is selected to represent the total
execution time of the quantum circuit.

114 Chapter 5. Hardware aware compiler

5.3 Evaluation and comparison of the proposed HA Algorithm

5.3.1 Methodology

We collected quantum circuits from previous works that aimed at building a collection of circuits
for benchmarking purpose [167, 169, 182]. These quantum circuits include several implementa-
tions taken from RevLib [183] as well as implementations of quantum algorithms from a variety
of domains including optimisation, simulation, quantum arithmetic, etc. These benchmarks are
well known in the community and given as quantum circuits written in the OpenQASM 2.0
language [180].

We chose to evaluate our algorithm on two quantum chips, ibmq_almaden and ibmq_valencia,
available from the IBM Quantum experience website. Additionally, we used the ibmq_tokyo chip
that is not accessible anymore but has been widely used as benchmark by state-of-art algorithms.
ibmq_almaden is a 20-qubit quantum chip. Its topology and characteristics are summarised in
Figure 5.4 and Table 5.1. ibmq_valencia is a 5-qubit chip depicted in Figure 5.1b. ibmq_tokyo
is a 20-qubit virtual chip depicted in Figure 5.9.

Our algorithm is implemented in Python and the Qiskit version is 0.19.1. To empirically
evaluate our algorithm, we use a personal computer equipped with 1 Intel i5-5300U CPU and 8
GB memory. The Operating System is Ubuntu 18.04.

At the time of writing, several algorithms already exist and are available, as discussed in
Section 5.1. The SABRE algorithm [169] seems to be among the best performers when using
the second metric described in Section 5.2.3, the number of additional gates inserted in order
to make the given quantum circuit hardware-compliant. The authors also provide a good initial
mapping method. Among the iterative improvements based on the SABRE algorithm, the
DL [174] (Dynamic Look-ahead) algorithm seems to be a good candidate for inclusion in our
benchmark as it shows an improvement of the number of additional gates required. Moreover,
the mapping method presented in [158] uses hardware calibration data to try to find a good
mapping and as such is interesting to include in the benchmarked algorithms.

We compare the HA algorithm to all the algorithms cited above. The source code of SABRE
has been provided by the authors of the algorithm, and the mapping method presented in [158],
called Noise-Adaptive (N-A) Compiler, has been integrated into Qiskit as a transpiler pass.
Finally, we also include the default transpiler included in Qiskit as baseline. We execute our
HA mapping transition algorithm with two different initial mapping algorithm: SABRE initial
mapping algorithm and our Hardware-aware Simulated Annealing (HSA) algorithm.

Summarising, five different algorithms are included in the benchmarks: (1) our HA map-
ping algorithm with SABRE initial mapping; (2) our HA mapping algorithm with HSA initial
mapping; (3) SABRE mapping algorithm with SABRE initial mapping; (4) N-A Compiler and
(5) Qiskit transpiler. For a fair comparison, we set the optimisation_level parameter of the
Qiskit transpiler to 01 and make sure that the circuits obtained from the five methods are all
executed with the same calibration data. Moreover, when using the N-A Compiler, the routing
method is set to “look-ahead” to make sure that it uses its look-ahead ability.

To evaluate our algorithm with the different initial mapping methods, we allow each of them
to call the mapping algorithm at most 100 times. The number of calls to the mapping algorithm
is a natural parameter of the simulated annealing-based method, but the SABRE initial mapping
method only requires 2 calls. To let the SABRE algorithm take advantage of a larger number of
calls, we repeat the algorithm on several random initial mappings until no more calls are allowed
and choose the best mapping found. The whole process is repeated 10 times to obtain 10 initial
mappings.

We divide benchmarks by size according to their number of gates. We only execute small size

1The optimisation_level is set to zero to only use the mapping algorithm and avoid other modifications of
the quantum circuit that do not happen with the other benchmarked algorithms.

5.3. Evaluation and comparison of the proposed HA Algorithm 115

B
V
5

m
od
5m

ils
65

al
u-
v0

27
3
17

13
al
u-
v1

28
de
co
d2
4-
v2

43
m
od
5d
2
64

4g
t1
3
92

is
in
g

0

20

40

60

N
u
m
b
er

o
f
a
d
d
it
io
n
al

g
a
te
s

HA+SABRE HA+HSA SABRE N-A Qiskit

(a) Average number of additional gates (CNOT)
over 10 repetitions.

B
V
5

m
od
5m

ils
65

al
u-
v0

27
3
17

13
al
u-
v1

28
de
co
d2
4-
v2

43
m
od
5d
2
64

4g
t1
3
92

is
in
g

0

0.1

0.2

0.3

0.4

0.5

0.6

S
u
cc
es
s
ra
te

HA+SABRE HA+HSA SABRE N-A Qiskit

(b) Average success rate of each quantum cir-
cuit over 10 repetitions.

Figure 5.10: Comparison of the average number of additional gates and success rate on ibmq_valencia.
HA algorithm has been used with α1 = 0.5, α2 = 0.5 and α3 = 0.

benchmarks on real quantum hardware, because the larger benchmarks results are exhibiting too
much noise to obtain any meaningful results. Moreover, the initial mapping generation process
described above is applied on small and medium sized benchmarks. Large benchmarks suffer
from long run time, so we generate 10 initial random mappings and use them with different
algorithms. When using ibmq_tokyo virtual chip, we select the best results out of 5 attempts,
which is a similar approach applied in the SABRE and DL research papers.

When testing the HSA algorithm we used the random policy described in Section 5.2.2 to
choose which one of the three subroutines to execute. The shuffle procedure is executed with
a probability of 0.9, the expand algorithm is chosen with a probability 0.08 and the reset
procedure is executed when the two previous algorithms are not used (i.e., with a probability of
0.02).

First, we compare the number of additional gates and success rate. The weight parameter
α1 associated with the SWAP matrix S is set to 0.5, the weight parameter α2 associated with the
CNOT error matrix E is set to 0.5 and α3, the weight associated with the CNOT execution time
matrix T is set to 0.

In a second time, we compare the number of additional gates and total execution time.
Weight are set as (α1, α2, α3) = (0.5, 0, 0.5).

Finally, we compare the number of additional gates for circuits that are not executable on
the real quantum device with the weights (α1, α2, α3) = (1, 0, 0).

For these three scenarii, the weight parameter W in the cost function Equation (5.5) is set
to 0.5 and the extended layer size is set to |E| = 20.

5.3.2 Experimental results

As stated in Section 5.3.1, we compiled several circuits with the 5 mapping algorithms to bench-
mark. Both ibmq_valencia (see Figure 5.10) and ibmq_almaden (see Figure 5.11) have been
used as target backend.

We compare both the average number of additional gates (see Figure 5.10a and Figure 5.11a)
and average success rate (see Figure 5.10b and Figure 5.11b) among the 10 initial mappings for

116 Chapter 5. Hardware aware compiler

B
V
5

m
od
5m

ils
65

al
u-
v0

27
3
17

13
al
u-
v1

28
de
co
d2
4-
v2

43
m
od
5d
2
64

4g
t1
3
92

is
in
g

0

20

40

60

80

100

N
u
m
b
er

o
f
a
d
d
it
io
n
al

ga
te
s

HA+SABRE HA+HSA SABRE N-A Qiskit

(a) Average number of additional gates (CNOT)
over 10 repetitions.

B
V
5

m
od
5m

ils
65

al
u-
v0

27
3
17

13
al
u-
v1

28
de
co
d2
4-
v2

43
m
od
5d
2
64

4g
t1
3
92

is
in
g

0

0.1

0.2

0.3

0.4

0.5

S
u
cc
es
s
ra
te

HA+SABRE HA+HSA SABRE N-A Qiskit

(b) Average success rate of each quantum cir-
cuit over 10 repetitions.

Figure 5.11: Comparison of the average number of additional gates and success rate on ibmq_almaden.
HA algorithm has been used with α1 = 0.5, α2 = 0.5 and α3 = 0.

each of the five benchmarked methods. The complete experimental results are listed in Table 5.4
and Table 5.5.

The Qiskit default qubit mapping algorithm is nearly always the worst one in terms of
additional gates, which translates in most of the cases to the worst output state fidelity. Although
N-A compiler takes into account the calibration data and uses a look-ahead strategy, results
show that it does not outperform the SABRE mapping algorithm with SABRE initial mapping
(labelled as SABRE in the plots). Our HA mapping algorithm with SABRE initial mapping
(labelled as HA+SABRE in the plots) seems to be the best combination as, on average, it achieves
the best success rate. Moreover, HA+SABRE gives the minimum number of additional gates. HA
mapping algorithm with HSA initial mapping (labelled as HA+HSA in the plots) is also good, but
its results are less consistent than HA+SABRE due to its random nature. Although, in many test
cases, it outperforms SABRE.

We also tried to map and execute the qft_10 circuit which implements a Quantum Fourier
Transform (QFT) on 10 qubits. We found that its success rate is less than 0.01 for all the methods
tested in the benchmark. Because the base success rate is too low to perform a meaningful
comparison, we only compare the number of additional gates as summarised in Table 5.2 and
Table 5.3 for quantum circuits with a medium-to-large number of gates.

Figure 5.12 shows the result of comparing the execution times, number of additional gates
and success rates of the HA algorithm with SABRE algorithm on ibmq_valencia. The execution
time is reduced by 19% on average. Even though the weight parameter α2 of CNOT error matrix
E is set to 0, the success rate is improved by 8%. The number of additional gates is reduced by
38%.

Table 5.2 lists the result of the number of additional gates on ibmq_almaden. Using the
selection of SWAP and Bridge gate, the HA algorithm can outperform SABRE on circuits with
different sizes. For medium circuits, HA and SABRE give similar results, with HA improving
the result from SABRE for only one circuit among the eight circuits tested. For large circuits,
HA outperforms SABRE and consistently reduces the number of additional gates by 28% on
average. Table 5.3 shows the number of additional gates on ibmq_tokyo when comparing the
HA algorithm with SABRE and DL. DL outperforms SABRE on nearly all the benchmarked

5.4. Conclusion 117

m
od
5m

ils
65

al
u-
v0

27

3
17

13
de
co
d2
4-
v2

43

m
od
5d
2
64

4g
t1
3
92

10

15

20

25

30

35
E
x
ec
u
ti
on

ti
m
e
(µ
s)

SABRE HA

(a) Execution time
m
od
5m

ils
65

al
u-
v0

27

3
17

13
de
co
d2
4-
v2

43

m
od
5d
2
64

4g
t1
3
92

10

20

30

40

N
u
m
b
er

of
ad

d
it
io
n
a
l
g
a
te
s

SABRE HA

(b) Number of additional gates

m
od
5m

ils
65

al
u-
v0

27

3
17

13
de
co
d2
4-
v2

43

m
od
5d
2
64

4g
t1
3
92

0.1

0.2

0.3

0.4

0.5

0.6

F
id
el
it
y

SABRE HA

(c) Success rate

Figure 5.12: Comparison of execution time, number of additional gates and fidelity on ibmq_valencia.
HA has been used with α1 = 0.5, α2 = 0 and α3 = 0.5.

quantum circuits and the HA algorithm is able to further reduce the number of additional gates
by 14% on average.

The SABRE and DL authors only provide the runtime of their algorithm on ibmq_tokyo. As
such, a comparison of of the three algorithms runtime on this specific chip topology is shown in
Table 5.3. Note that DL is written in C++ and tested on a normal personal computer. SABRE
is written in Python and tested on a server with 2 Intel Xeon E5-2680 CPUs (48 logical cores)
and 378GB memory. Since there is an intrinsic speed difference between C++ and Python as
well as the different devices used, the runtime data in this table are for reference rather than
for comparison.

5.4 Conclusion
In this chapter we presented a classical algorithm that can be used to adapt quantum circuits to a
specific hardware topology by taking into account the calibrations of the chip. We benchmarked
the proposed algorithm against several algorithms that were considered the state-of-the-art at
the time the research was performed and showed that our algorithm is able to improve very
consistently over these algorithms, both with respect to the number of additional quantum
gates and to the success rate of the compiled quantum circuits.

118 Chapter 5. Hardware aware compiler

Table 5.2: Number of additional gates on ibmq_almaden for large circuits. HA has been used with
α1 = 1, α2 = 0 and α3 = 0. n: number of qubits. gall: total number of gates. g: average number of
additional gates. gmin: minimum number of additional gates. t: runtime in seconds. ∆g: comparison of
average number of additional gates between HA and SABRE. ∆gmin: comparison of minimum number
of additional gates between HA and SABRE.

Original Circuit SABRE HA Comparison
type name n gall g gmin g gmin t ∆g% ∆gmin%
medium qaoa 6 270 30 27 30 27 0.008 0 0
medium ising model 10 10 480 0 0 0 0 0.02 0 0
medium ising model 13 13 633 0 0 0 0 0.03 0 0
medium ising model 16 16 786 3 0 9 0 0.10 -200 0
medium qft 10 10 200 93 81 66 42 0.04 29 48.1
medium qft 13 13 403 192 177 195 171 0.07 -1.6 3.4
medium qft 16 16 512 425 372 450 375 0.24 -5.9 -0.8
large adr4 197 13 3439 2973 2856 2136 2004 2.13 28.2 29.8
large radd 250 13 3213 2742 2655 2040 1926 1.62 25.6 27.5
large z4 268 11 3073 2628 2559 1872 1815 1.44 28.8 29.1
large sym6 145 14 3888 3024 2982 2022 1965 2.18 33.1 34.1
large misex1 241 15 4813 3999 3831 2892 2630 3.04 27.7 31.3
large rd73 252 10 5321 4539 4428 3261 3090 3.73 28.2 30.2
large cycle10 2 110 12 6050 5127 5043 3795 3576 4.87 26 29.1
large square root 7 15 7630 6477 6324 4851 4707 7.00 25.1 25.6
large sqn 258 10 10223 8679 8580 6012 5736 13.92 30.7 33.1
large rd84 253 12 13658 11889 11673 8721 8574 24.54 26.6 26.5
large co14 215 15 17936 16710 16368 13071 12426 37.81 21.8 24.1
large sym9 193 10 34881 30558 30027 21900 21168 160.19 28.3 29.5
large 9symml 195 11 34881 30471 30129 21949 21168 151.84 28 29.7

5.4. Conclusion 119

Table 5.3: Number of additional gates on ibmq_tokyo for large circuits. HA has been used with α1 = 1,
α2 = 0 and α3 = 0. n: number of qubits. gall: total number of gates. g: minimum number of additional
gates. t: runtime in seconds. ∆g: comparison of minimum number of additional gates between HA and
DL.

Original Circuit SABRE DL HA Comparison
type name n gall g t g t g t ∆g%
medium ising model 10 10 480 0 0.004 0 0 0 0.005 0
medium ising model 13 13 633 0 0.007 0 0 0 0.01 0
medium ising model 16 16 786 0 0.01 0 0 0 0.02 0
medium qft 10 10 200 54 0.103 39 0.015 36 0.015 7.7
medium qft 13 13 403 93 0.036 96 0.031 78 0.043 18.8
medium qft 16 16 512 186 0.084 192 0.062 174 0.09 9.4
large adr4 197 13 3439 1614 0.49 1224 0.218 882 1.41 27.9
large radd 250 13 3213 1275 0.48 1047 0.186 840 1.24 19.8
large z4 268 11 3073 1365 0.44 855 0.202 801 1.13 6.3
large sym6 145 14 3888 1272 0.56 1017 0.202 786 1.71 22.7
large misex1 241 15 4813 1251 0.89 1098 0.249 942 2.57 14.2
large rd73 252 10 5321 2133 0.94 2193 0.343 1635 3.19 25.4
large cycle10 2 110 12 6050 2622 1.35 1968 0.348 1719 4.02 12.7
large square root 7 15 7630 2598 1.5 1788 0.406 828 5.66 53.7
large sqn 258 10 10223 4344 3.52 3057 0.563 2712 11.7 11.3
large rd84 253 12 13658 6147 5.39 5697 0.892 3843 21.8 32.5
large co14 215 15 17936 8982 9.51 5061 1.062 6429 36 -27
large sym9 193 10 34881 16653 30.17 13746 2.091 11553 138.3 16

Table 5.4: Comparison of number of additional gates and fidelity on ibmq_valencia. HA has been used
with α1 = 0.5, α2 = 0.5 and α3 = 0. n: number of qubits. gall: total number of gates. g: average
number of additional gates. gmin: minimum number of additional gates. S: mean of success rate. Smax:
maximum of success rate. ∆g: comparison of average number of additional gates between HA+SABRE
and SABRE. ∆gmin: comparison of minimum number of additional gates between HA+SABRE and
SABRE. ∆S: comparison of mean of success rate between HA+SABRE and SABRE. ∆Smax: com-
parison of maximum of success rate between HA+SABRE and SABRE. t: runtime of HA+SABRE in
seconds.

Original Circuit SABRE HA + SABRE HA + HSA Qiskit N-A Comparison
name n gall g gmin S Smax g gmin S Smax t g gmin S Smax g S g S ∆g% ∆gmin% ∆S% ∆Smax%
BV5 5 15 3 3 0.576 0.639 3 3 0.612 0.639 0 3 3 0.581 0.63 12 0.456 3 0.56 0 0 6.3 0
mod5mils 65 5 35 21 21 0.495 0.515 12 12 0.525 0.559 0.003 12 12 0.53 0.559 27 0.275 27 0.443 42.9 42.9 6.1 8.5
alu-v0 27 5 36 24 24 0.322 0.329 18 18 0.437 0.437 0.002 18 18 0.384 0.431 24 0.335 24 0.319 25 25 35.7 32.8
3 17 13 3 36 18 18 0.43 0.476 12 12 0.503 0.546 0.004 12 12 0.463 0.542 36 0.458 21 0.354 33.3 33.3 17 14.7
alu-v1 28 5 37 24 24 0.225 0.233 18 18 0.342 0.384 0.004 18 18 0.269 0.384 39 0.178 27 0.192 25 25 52 64.8
decod24-v2 43 4 52 36 36 0.262 0.396 18 18 0.307 0.37 0.004 18 18 0.303 0.372 36 0.07 36 0.213 50 50 17.2 -6.6
mod5d2 64 5 53 45 45 0.14 0.208 24 24 0.199 0.207 0.005 24 24 0.194 0.207 42 0.171 48 0.125 46.7 46.7 42.1 -0.4
4gt13 92 5 66 45 45 0.171 0.191 24 24 0.194 0.206 0.006 24 24 0.199 0.22 69 0.154 48 0.18 46.7 46.7 13.5 7.9
ising 5 90 24 24 0.133 0.145 24 24 0.134 0.141 0.007 24 24 0.137 0.143 60 0.113 33 0.1 0 0 0.8 -2.8

120 Chapter 5. Hardware aware compiler

Table 5.5: Comparison of number of additional gates and fidelity on ibmq_almaden. HA algorithm
has been used with α1 = 0.5, α2 = 0.5 and α3 = 0. n: number of qubits. gall: total number of
gates. g: average number of additional gates. gmin: minimum number of additional gates. S: mean
of success rate. Smax: maximum of success rate. ∆g: comparison of average number of additional
gates between HA+SABRE and SABRE. ∆gmin: comparison of minimum number of additional gates
between HA+SABRE and SABRE. ∆S: comparison of mean of success rate between HA+SABRE and
SABRE. ∆Smax: comparison of maximum of success rate between HA+SABRE and SABRE. t: runtime
of HA+SABRE in seconds.

Original Circuit SABRE HA + SABRE HA + HSA Qiskit N-A Comparison
name n gall g gmin S Smax g gmin S Smax t g gmin S Smax g S g S ∆g% ∆gmin% ∆S% ∆Smax%
BV5 5 15 3 3 0.436 0.624 3 3 0.497 0.651 0.002 7 6 0.318 0.508 24 0.04 6 0.37 0 0 14 4.3
mod5mils 65 5 35 21 21 0.315 0.47 12 12 0.383 0.481 0.003 19 15 0.268 0.439 54 0.107 33 0.214 42.9 42.9 21.6 2.3
alu-v0 27 5 36 21 21 0.276 0.413 15 15 0.3 0.483 0.002 26 19 0.265 0.408 36 0.127 36 0.139 28.6 28.6 8.7 16.9
3 17 13 3 36 18 18 0.333 0.469 12 12 0.395 0.519 0.002 12 12 0.35 0.502 33 0.216 27 0.207 33.3 33.3 18.6 10.7
alu-v1 28 5 37 24 24 0.25 0.359 15 15 0.391 0.478 0.002 21 21 0.27 0.408 48 0.054 30 0.087 37.5 37.5 56.4 33.1
decod24-v2 43 4 52 36 36 0.199 0.334 18 18 0.284 0.401 0.006 20 18 0.235 0.387 54 0.076 39 0.145 50 50 42.7 20.1
mod5d2 64 5 53 45 45 0.132 0.198 24 24 0.16 0.266 0.003 33 33 0.15 0.263 54 0.073 48 0.056 46.7 46.7 21.2 34.3
4gt13 92 5 66 45 45 0.13 0.249 24 24 0.145 0.312 0.007 32 27 0.165 0.347 99 0.061 66 0.106 46.7 46.7 11.5 25.3
ising 5 90 24 24 0.115 0.177 24 24 0.133 0.191 0.01 36 30 0.121 0.235 51 0.07 33 0.054 0 0 15.7 7.9

Chapter

6
Variational quantum linear
solver

Following the results obtained in Chapters 3 and 4 and the research path of Chapter 5, an
interesting approach to check if scientific computing problem solvers can be of interest on NISQ
chips is to actually implement an algorithm that is tailored to noisy and small quantum chips.
In this chapter we perform a study of a variational algorithm that can be used to solve linear
systems of equations: the Variational Quantum Linear System algorithm introduced in [48].
The study performed considers several linear systems of interest and executions on NISQ chips
from IBM.

Contents
6.1 Introduction . 121

6.1.1 Quantum error correction . 122
6.1.2 Quantum error mitigation . 122

6.2 Variational quantum algorithms . 123
6.2.1 General idea . 123
6.2.2 Ansatz . 124
6.2.3 Barren plateaus . 126

6.3 The Variational Quantum Linear Solver 127
6.3.1 Cost functions . 127
6.3.2 Linear systems of interest . 128

6.4 Results of the study . 131
6.4.1 Global versus local cost function . 132
6.4.2 Dependence on the condition number κ 132
6.4.3 Dependence on the size of the linear system 135
6.4.4 Running VQLS on noisy hardware . 137

6.5 Conclusion . 137

6.1 Introduction
The quantum computing field has been evolving at an increasing rate in the past few years
and is currently gaining more traction. Several quantum chips, the underlying hardware that
enable researchers and companies to run quantum algorithms, have been announced by different
research teams. The error rates and number of qubits provided by these chips greatly improved,
with quantum hardware that have up to 127 qubits in the end of 2021 [115]. This increase
in qubit number also comes with steady improvements of the qubits quality as the techniques
around chip engineering, qubit control or software are improving.

This improvement of the quantum computing hardware is to be compared with the advances
in the very active field of quantum algorithms. Quantum algorithms applied to linear algebra,
and more particularly solvers for linear system of equations, are of particular interest as they

122 Chapter 6. Variational quantum linear solver

promise to solve an ubiquitous problem in the world of scientific computing: finding efficiently
the solution to a given linear system of equation.

The HHL algorithm [13] was the first quantum algorithm devised to solve the quantum
alternative of the linear system of equation problem. However, a careful study of the theoretical
requirements [38] and practical resources [77] to be able to use it on a given linear system raise
the concern that the HHL algorithm might not be interesting in practical use-cases. Additionally,
due to the large number of gates required to execute the algorithm, the HHL algorithm is not
suitable for NISQ hardware (see Definition 11).

The issue raised by the high error rates characterising NISQ hardware is major and impact
the whole field of quantum computing. As such, a large variety of approaches have been explored
to mitigate the negative impact of noise on computations. The following sections present two of
the most promising approaches.

6.1.1 Quantum error correction

One of the first approaches that has been theoretically explored and is based on classical com-
puting ideas is error correction. The goal of error correction is to embrace the fact that the
underlying hardware is faulty and to reliably correct the errors that might happen. Most of
the classical error correction techniques are based on adding redundant information in order to
detect and/or correct any error that might happen during the communication or computation.
This technique of encoding redundantly an information before performing a potentially faulty
operation to “protect” it from errors is easily applicable to classical bits that can be read and
copied at will, but quantum bits and quantum computing in general are subject to what is called
the no-cloning theorem that forbids the direct translation of classical error-correction techniques
to quantum computers.

Theorem 2 (No-cloning theorem). Let H be a Hilbert space, |φ〉 ⊗ |ψ〉 ∈ H ⊗H two quantum
states from the same state space H. Then, there is no unitary U acting on H ⊗H such as for
all |φ〉 and |ψ〉 in H

U (|φ〉 ⊗ |ψ〉) = |φ〉 ⊗ |φ〉 (6.1)

up to a global phase eiα.

The no-cloning theorem forbids the exact cloning of unknown quantum states, which in turns
forbids the adaptation of certain classical error correction schemes to quantum computing.

Rather than copying quantum states when needed, quantum error-correction schemes [104]
encode a logical qubit, i.e., a perfect, noise-free qubit, using several physical qubits, i.e., noisy
qubits. A crucial point of quantum error-correction schemes is their threshold ε, i.e., the
maximum error-rate the physical qubits can experience before the error-correcting scheme starts
failing [104] and stops correcting all errors. The order of magnitude of the threshold ε depends a
lot on the error-correction scheme used, but it is typically in the order of magnitude of 10−3 to
10−2 [184, Table 1]. For most quantum error correction schemes, the threshold ε is the maximum
error-rate at which they can theoretically operate, but the number of physical qubits that will be
used to encode one logical qubit close to the threshold is very high and impractical for current
quantum systems. For example, [104] shows with a numerical study that with an error rate of
p = 10−3 per elementary gate, implementing a logical qubit with a probability of error below
10−15 requires more than 104 physical qubits.

6.1.2 Quantum error mitigation

Because correcting quantum errors is not currently feasible due to the error-rates of current
quantum hardware being too high and the large number of qubits required to encode one logical
qubit, another approach to lower down the negative impact of hardware errors is to only try to

6.2. Variational quantum algorithms 123

mitigate them, i.e., try to reduce to a minimum their effect on the result of a quantum compu-
tation knowing that some errors will still pass through in the final result. There are a variety of
mitigation methods, some of them only considering the quantum computation performed while
others are also using classical processing to mitigate the results obtained from the noisy quantum
chip by using pre- and post-processing.

Within the mitigation methods that do not require any classical post-processing, one can
cite dynamical decoupling that insert specific operations when a qubit is idle to avoid the effect
of decoherence [185–190], quantum circuit optimisation [132–136] that modify the quantum
computation performed in order to lower down the effect of potential errors or their rate of
apparition or pulse-shape optimisation [137–139] that changes the low-level implementation of
quantum gates to try to lower down their error rate.

Hybrid quantum-classical methods are also well represented with, for example, probabilis-
tic error cancellation [191–193], Clifford data regression [194, 195], measurement error mitiga-
tion [196] or zero-noise extrapolation [191, 197, 198].

6.2 Variational quantum algorithms

While quantum error correction and quantum error mitigation are mostly independent of the
quantum computation performed (i.e., they can be used for any quantum computation), the use
of quantum variational algorithms is a paradigm shift that changes the underlying algorithms
used to solve a given problem with the goal of having a NISQ-compatible algorithm from the
ground up.

6.2.1 General idea

Variational algorithms are a specific type of hybrid quantum-classical algorithms that, by fol-
lowing a specific template first introduced in [199], aim at being NISQ-friendly. Creating a
variational algorithm for a given problem is a matter of carefully encoding the solution of the
problem into the minimum of a cost function that can be written as

C (~α) = 〈ψ (~α)|H |ψ (~α)〉 (6.2)

where |ψ (~α)〉 is a classically-parameterised quantum state that is prepared with a classically-
parameterised unitary U (~α) (also called ansatz, see Section 6.2.2) andH is a Hamiltonian matrix
whose ground-state encodes the solution to the problem at hand.

The particular cost function expression shown in Equation (6.2) is motivated by the fact
that Postulate 4 and the special case of Projection-Valued Measurement (PVM) used when the
quantum system measured is considered isolated match exactly the cost function, meaning that
the cost function C can be computed on a quantum computer by measuring a specific quantum
state |ψ (~α)〉 according to the measurement represented by the hermitian matrix H.

Most of the time the measurement matrixH will not be trivially implementable on a quantum
computer, leading to a measurement that will be expensive to implement in practice. One of
the key realisations of variational algorithms is that under specific conditions the computation
of C can be split into several simpler and independent computations. Such conditions can for
example be that the matrix H should be a linear combination of measurement matrices:

H =
∑
i

βiHi (6.3)

where each Hi represent an easily implementable measurement on a quantum computer. Ex-
amples of “simple to implement” measurement matrices include the Hi that can be written as

124 Chapter 6. Variational quantum linear solver

Figure 6.1: Schematic representation of the computations performed by the variational quantum eigen-
solver. Any variational quantum algorithm follow the same principles with a problem-dependent Hamil-
tonian H and decomposition H =

∑
i αiHi. Graph obtained from [199].

the tensor product of Pauli matrices Hi =
⊗n−1

j=0 σj where σj ∈ {I, σX , σY , σZ}. Under this
condition, the cost function becomes

C (~α) =
∑
i

βi 〈ψ (~α)|Hi |ψ (~α)〉 =
∑
i

βiCi (~α) (6.4)

where each Ci can be computed efficiently and independently on a quantum computer and a
classical computer computes the weighted sum (see Figure 6.1).

Once function C has been devised and can be computed using a quantum computer, its cost
is optimised using classical optimisers, either using gradient-free methods or, if the gradient or
higher-order derivatives of C can be computed efficiently, using more sophisticated optimisation
methods using this additional information.

6.2.2 Ansatz

As briefly explained in Section 6.2.1, a classically parameterised quantum state |ψ (~α)〉 is pre-
pared by applying the classically parameterised unitary U (~α). The unitary U (~α) is commonly
called an ansatz. Using the right ansatz (or parameterised quantum circuit) for a given prob-
lem instance is a crucial problem that may have deep consequences on the convergence of the
variational algorithm used.

Choosing the best parameterised quantum circuit for a given problem instance is an open
question and will depends on several factors such as the problem at hand, the desired precision,
the hardware noise level, etc. In general, ansatzes can be grouped into two groups, depending
on whether the ansatz is problem-inspired or problem-agnostic.

Problem-inspired ansatzes use prior knowledge about the problem at hand to guide the
exploration of trial states and avoid as many “invalid” states (with respect to the problem
constraints) as possible. The Unitary Coupled Cluster (UCC) ansatz is a good example of such
a problem-inspired ansatz [199].

6.2. Variational quantum algorithms 125

Figure 6.2: Illustration of ansatz expressibility for a 1-qubit ansatz. As can be seen, the two left-most
circuits have a low expressibility as they are not able to cover the space of all the 1-qubit states. The ansatz
composed of successive applications of the H, Rz (θ1) and Rx (θ2) is able to cover the whole 1-qubit state
space, but does not cover it uniformly. Finally, the right-most circuit, composed of a random unitary, is
the definition of the maximally expressive ansatz as it is able to cover the whole space uniformly. Figure
obtained from [200].

But not all problems have a structure that imposes specific constraints on the possible
solutions. Solving general systems of linear equations is exactly one of such problem as the
normalised solution vector |x〉 can be any efficiently preparable quantum state. This claim is
easily proven by taking the trivial linear system A |x〉 = |b〉 with A = I, the identity matrix.
In this case, the solution of the linear system is |b〉, which can be any efficiently preparable
quantum state. Rephrasing, it is not possible to devise a problem-inspired ansatz for all the
problems, which calls for problem-agnostic ansatzs.

With such a problem, the ansatzs chosen should be as generic as possible. The capability
of a given ansatz acting on n qubits to cover uniformly the space of all the n-qubit quantum
states is quantified by a quantity known as its expressibility [200] and illustrated in Figure 6.2.
Expressibility of an ansatz A

(
~θ
)
is often computed as the deviation between the ensemble of

Haar-random state and the distribution of quantum states that can be generated by A when ~θ
is sampled uniformly.

Hardware-efficient ansatzs is a class of problem-agnostic ansatzs that try to be as close as
possible to the underlying hardware to reduce their execution time. These ansatzs often adapt
their entangling gate to the hardware topology to avoid any SWAP gate insertion during the
qubit mapping phase and the associated execution time increase due to the SWAP gate execution.
Figure 6.3 shows a possible hardware-efficient ansatzs using the controlled-X as entangling gate
on a random topology using 4 qubits.

Ry(θ1)

Ry(θ2)

Ry(θ3)

Ry(θ4)

Ry(θ5)

Ry(θ6)

Ry(θ7)

Ry(θ8)

Ry(θ9)

Ry(θ10)

Ry(θ11)

Ry(θ12)

Ry(θ13)

Ry(θ14)

Ry(θ15)

Ry(θ16)

Figure 6.3: One example of the hardware-efficient ansatz used in this study. Represented here is a depth
of 3 with only Ry rotations as 1-qubit gates. The controlled X gates are used to generate entanglement
and are applied following the native connectivity of the targeted hardware (here randomly selected).

Note that the hardware-efficient ansatz depicted in Figure 6.3 is slightly “problem-inspired”

126 Chapter 6. Variational quantum linear solver

Figure 6.4: Illustration of the effect of Barren plateau by using the (global) cost function Cn(~θ) =
1 −

∏n
i=1 cos2 (θi) for n = 4 (blue) and n = 24 (orange) and fixing all variables except θ1 and θ2. The

cost function Cn ends up being constant nearly everywhere for large n. Image obtained from [201].

and is a good illustration of optimisations that rely on knowledge about the problem that will
be solved. In this case, the ansatz in Figure 6.3 does not, by design, prepare quantum states
with complex amplitudes. This is due to the fact that the controlled-X quantum gate unitary
matrix (shown in Equation (1.18)) and the Ry gate

Ry (θ) =

cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos

(
θ
2

)  (6.5)

only have real coefficients and that the initial quantum state, supposed to be
⊗

i |0〉, does not
contain any complex amplitude either.

In order to limit the number of varying parameters for the upcoming analysis and because
our ultimate goal is to understand how the VQLS algorithm can behave on real hardware, we
chose to only use the hardware-efficient ansatz presented in Figure 6.3.

6.2.3 Barren plateaus

The phenomenon of Barren plateau is a major limitation of variational quantum algorithm and
the reason why a careful study of the cost function and ansatz used is necessary to ensure an
appropriate convergence rate. It essentially states that cost functions used within the framework
of variational quantum algorithms may have derivatives that, on average, vanish exponentially
with the system size (i.e., the number of qubits n). From the cost function point of view, this im-
plies that the optimisation landscape will appear flat nearly everywhere except on exponentially
small regions around the minima as illustrated in Figure 6.4.

Due to the Barren plateau phenomenon, the cost of estimating expectations values with a
sufficient precision to be able to use information about their difference for a local perturbation
of the inputs grows exponentially. This exponential cost obviously impede the efficiency of
gradient-based optimisation method that rely on an estimation of the gradient, but also impacts
gradient-free optimisation as shown in [202].

It has been shown in [201] that local cost functions that only rely on the computation
of expectations values over a constant number of qubits are not as impacted as global cost
functions. The authors also show that the ansatz depth plays a crucial role in the apparition of
Barren plateau and summarise their findings in a graphical representation that is duplicated in
Figure 6.5.

6.3. The Variational Quantum Linear Solver 127

(a) Apparition of the Barren plateau phenomenon
for global cost function.

(b) Apparition of the Barren plateau phenomenon
for local cost function.

Figure 6.5: Illustration of the Barren plateau apparition depending on the type of cost function used
(global or local) and the ansatz depth. Global cost functions are bound to eventually experience a Barren
plateau phenomenon whereas local cost functions might, under some conditions on the ansatz depth, be
free from any Barren plateau. Image obtained from [201].

6.3 The Variational Quantum Linear Solver
Due to the nature of NISQ hardware, quantum algorithms should take into account the high
error-rate associated with each gate execution. This means that in order to avoid being impeded
by noise, quantum implementations should refrain from executing large circuits to the quantum
chips. As shown in Section 6.2, , variational quantum algorithms offer the advantage of being
able to decompose larger problems into a series of smaller ones, thus limiting circuit size and
gate requirements making them ideal candidates for NISQ hardware.

6.3.1 Cost functions

The Variational Quantum Linear Solver (VQLS) algorithm [48] is a variational algorithm that
has been introduced to solve linear systems of equations. For a linear system Ax = b with a
given matrix A and right-hand side b, the VQLS algorithm may use one out of the two cost
functions introduced in [48] and repeated below.

The first cost function introduced in [48] is the global cost function CG described in Equa-
tions (6.6) and (6.7):

CG(~α) = 〈x(~α)|HG |x(~α)〉 (6.6)

where
HG = A† (I − |b〉 〈b|)A. (6.7)

The cost function CG has the advantage of being simple to understand: the matrix A is “applied”
to the trial quantum state that is supposed to encode the solution. This operation results in a
vector that does not necessarily represent a valid quantum state since A is not restricted to be
a unitary matrix but can be any 2n × 2n matrix. The vector ~v = A |ψ (~α)〉 is compared to the
right-hand side b by estimating the “proportion” of |~v〉 = ~v

||~v|| that does not overlap with |b〉.
The normalised version of the global cost function CG illustrates very nicely this interpretation:

ĈG(~α) = CG(~α)
〈x (~α)|A†A |x (~α)〉 = 1− | 〈~v|b〉 |2. (6.8)

But the global cost function CG (α) has a crucial downside: it is vulnerable to the phe-
nomenon called “Barren plateau” explained in Section 6.2.3. In order to avoid the Barren
plateau issue, a local cost function that is less vulnerable has also been devised in [48] and is
presented in Equations (6.9) and (6.10):

CL(~α) = 〈x(~α)|HL |x(~α)〉 (6.9)

128 Chapter 6. Variational quantum linear solver

Linear system name Decomposition of A Initialisation matrix V Equation

identity
⊗

i Ii
⊗

iHi Equation (6.13)
trivial

⊗
iXi

⊗
iHi Equation (6.14)

varying_condition A(k)
⊗

iHi Equation (6.18)
heat_opti B

⊗
iHi Equation (6.26)

Table 6.1: List of linear systems studied in this chapter.

where

HL = A†V

I − 1
n

n∑
j=1
|0j〉 〈0j | ⊗ Ij

V †A (6.10)

and V is the matrix representing the right-hand side quantum state preparation procedure such
as V |0〉 = |b〉. A normalised version of the local cost function is also introduced as

ĈL(~α) = 〈x(~α)|HL |x(~α)〉
〈x (~α)|A†A |x (~α)〉 . (6.11)

In order any of the cost functions presented above to be efficiently computable by a quantum
computer, additional conditions should be verified by the matrix A. Primarily, A should be
decomposable into a weighted sum of “easy-to-implement” (see Definition 19) unitary matrices:

A =
m−1∑
i=0

αiUi (6.12)

with A the matrix of the linear system at hand, αi any complex number and Ui unitary matrices
that can be efficiently implemented on a quantum computer.

Definition 19 (Easy-to-implement unitary matrices). A unitary matrix U on n qubits is con-
sidered “easy-to-implement” if there exist a quantum circuit C implementing this unitary matrix
with a number of quantum gates growing as O (poly (n)).

6.3.2 Linear systems of interest

In order to study the VQLS algorithm behaviour and convergence, we need to define several
representative and interesting linear systems to test the algorithm on. For the VQLS algorithm,
each linear system Ax = b is defined by:

1. The decomposition of the matrix A into a weighted sum of unitary matrices: A =
∑
i αiUi.

2. The unitary V that initialises the right-hand side: V |0〉 =
∑
i bi |i〉.

Even though the choice of the ansatz U (~α) that initialise the trial state |x (~α)〉 = U (~α) |0〉 is
highly problem-dependent or even instance-dependent, we chose to not include the ansatz in
what defines a particular linear system problem. This choice is justified by the fact that, for a
given linear system instance, any generic ansatz can theoretically be used to initialise the trial
state.

We listed four different linear systems in order to highlight different behaviours of the VQLS
algorithm with respect to different parameters. Each linear system used in this chapter is
summarised in Table 6.1 and explained in more details in the following sections.

6.3. The Variational Quantum Linear Solver 129

Identity linear system

The first linear system of interest consists in the trivial(
n−1⊗
i=0

Ii

)
x =

(
n−1⊗
i=0

Hi

)
|0〉

⇔ I⊗nx = 1√
2n

2n−1∑
i=0
|i〉
. (6.13)

Having such a trivial linear system is important to establish a baseline. Apart from being the
most simple instance of the linear system problem, the identity matrix that defines this system
has several desirable properties. First, the identity matrix has a constant condition number
κ = 1 with respect to the number of qubits. Moreover, due to the simplicity of the system, it
is possible to easily choose V and a specific ansatz U (~α) such that the ansatz is able to encode
exactly the solution of the linear system. Finally, AI =

(⊗n−1
i=0 Ii

)
is a tensor product of identity

matrices and as such checks the “easy-to-implement” condition from Definition 19.
In other words, the linear system in Equation (6.13) is particularly interesting as it allows

the study of the VQLS algorithm in an ideal setting, removing several factors that might impact
the convergence such as the underlying linear system hardness (quantified with the condition
number κ (AI)), the imprecisions due to the approximability of the solution with the trial states
|x (α)〉 at hand and the potentially larger number of quantum gates and quantum circuits that
would be needed to implement any linear system more complex than the identity.

This identity linear system is used as the baseline for comparison.

Pauli-X

The second linear system of interest, presented in Equation (6.14), is also trivially solvable but
actually requires more quantum gates and circuit submissions than the identity linear system
from Section 6.3.2. (

n−1⊗
i=0

Xi

)
x =

(
n−1⊗
i=0

Hi

)
|0〉 (6.14)

Theoretically, due to the fact that the matrix

AX =
n−1⊗
i=0

Xi (6.15)

representing this linear system is a permutation of the matrix AI , this linear system should be as
easy to solve as the identity linear system. Nevertheless, implementing in practice the VQLS
algorithm for the matrix AX requires more quantum gates than for the identity matrix. This
leads to a linear system of equivalent hardness, but with an overhead due to its representation.

Another reason to include the pauli-x linear system from Equation (6.14) in the study is the
fact that it can be seen as a poor quantum formulation of the identity linear system. Indeed
the pauli-x linear system can be solved by first finding the permutation of columns that would
change the AX matrix into the identity AI matrix and then solving the simpler identity linear
system with a modified (permuted) right-hand side |b〉. Finding the permutation is trivial and
re-organising the solution only requires the application n X gates (one on each qubit).

Varying condition number

When dealing with linear systems, the condition number κ of the matrix representing the linear
system is a crucial quantity of interest that has huge implications on the inherent hardness of

130 Chapter 6. Variational quantum linear solver

the linear system. The condition number is defined as

κ (A) = σmax(A)
σmin(A) (6.16)

where σmax (resp. σmin) is the maximum (resp. minimum) singular value of A. For normal
matrices (i.e. matrices that commute with their complex conjugate), the condition number can
also be computed by using the maximum and minimum eigenvalues λmax and λmin:

κ (A) = λmax(A)
λmin(A) . (6.17)

The importance of the condition number κ on the linear system hardness makes it a param-
eter of choice for a study of the VQLS algorithm when this condition number κ vary. In this
chapter we use the matrix

A(k) = k + 1
2

n−1⊗
i=0

Ii +
(

1− k + 1
2

) n−1⊗
i=0

Zi. (6.18)

For any value of k, A(k) is diagonal and the entries in its diagonal are drawn from {1, k} meaning
that its eigenvalues are {1, k}. A(k) being diagonal and real, it is a normal matrix. As such its
condition number for any parameter k > 1 is

κ(A(k)) = |λmax (A(k)) |
|λmin (A(k)) | = k

1 = k. (6.19)

The case k < 1 is less interesting for this study as our goal to have a linear system with a
variable condition number is already fulfilled by > 1.

Discretised, periodic, implicit heat equation

The final test-case is inspired from a simple partial differential equation that is the normalised
and periodic heat equation, shown in Equation (6.20).

∂

∂t
f = ∂2

∂x2 f

f(0, t) = f(1, t)
f(x, 0) = f0(x)

(6.20)

Several methods exist to solve partial differential equations numerically. One of the most
widespread is probably to reformulate the partial differential equation as a linear system by
using some well-known classical discretisation schemes, for example finite differences.

Using a finite difference scheme, we can discretise the time dimension using steps of k (i.e.
tn = nk) and the space dimension using steps of h (i.e. xi = ih). This discretisation allows to use
a finite difference scheme to solve the heat equation presented in Equation (6.20). Depending on
the schemes used to approximate time and space derivatives, solving Equation (6.20) can result
in an explicit or an implicit method of resolution.

Let f(xi, tn) = fni , the explicit method

fn+1
i − fni

k
=
fni+1 − 2fni + fni−1

h2 (6.21)

is obtained when using a forward difference for the time derivative and a second-order central
difference for the spatial derivative. The approximated value at time n+1, fn+1

i , can be directly
computed from Equation (6.21) using the formula

fn+1 = (1− 2r) fni + rfni+1 + rfni−1 (6.22)

6.4. Results of the study 131

where r = k/h2. This explicit method has the advantage of being simple to solve, but is known
to be numerically unstable or non-convergent when r > 1/2, which might be an issue.

A more complex but resilient numerical scheme is obtained when using a backward difference
for the time derivative and a second-order central difference for the spatial derivative:

fn+1
i − fni
δk

=
fn+1
i+1 − 2fn+1

i + fn+1
i−1

δh2 . (6.23)

This implicit method leads to the resolution of a linear system of equations given by

(1 + 2r) fn+1
i − rfn+1

i+1 − rf
n+1
i−1 = fni (6.24)

or, in its matrix form:

B fn+1 =



1 + 2r −r 0 · · · 0 −r

−r 0

0
... 0

0 −r
−r 0 · · · 0 −r 1 + 2r


fn+1 = fn (6.25)

where fn is the vector of the space-discretised values of f at time t = nk. The matrix B can be
written as a weighted sum of “easy-to-implement” (see Definition 19) unitary matrices as shown
in Equation (6.26):

B = (1 + 2r)
(
n−1⊗
i=0

Ii

)
− r (add1)− r (add1)† (6.26)

were

add1 =



0 1 0 · · · 0
...
... 0

0 . . . 1
1 0 · · · · · · 0


(6.27)

is the unitary matrix representing the quantum operation that adds 1 to a quantum register. This
decomposition is usable with the VQLS algorithm because there exist efficient implementations
of the add1 gate [203] (see requirements in Section 6.3).

Note that it is also possible to implement efficiently the non-periodic version of the linear
system with Dirichlet boundary conditions, but this requires to implement 2-level unitaries as
a quantum circuit. The implementation of 2-level unitary matrices into a quantum circuit is
efficient [204], i.e., requires a number of gates that grows logarithmically with the linear system
size, but is not NISQ-compatible as it requires several multi-controlled X gates.

6.4 Results of the study

We ran the different linear systems listed in Section 6.3.2 using the hardware-aware ansatz
presented in Section 6.2.2.

132 Chapter 6. Variational quantum linear solver

6.4.1 Global versus local cost function

As noted in Section 6.3.1, the VQLS algorithm can use either a global or a local cost function.
These cost function both have different characteristics and result in different quantum circuits
being submitted to the quantum chip or simulator.

Let
|Ψ (~α)〉 = A |x (~α)〉

〈x (~α)|A†A |x (~α)〉 , (6.28)

both cost functions can be re-written as

CG (~α) = 〈Ψ (~α)|Ψ (~α)〉 − |〈b|Ψ (~α)〉|2 (6.29)

and

CL (~α) = 1
2

〈Ψ (~α)|Ψ (~α)〉 − 1
n

n∑
j=1
〈Ψ (~α)|UZjU † |Ψ (~α)〉

 (6.30)

by using the equality

I − 1
n

n∑
i=1
|0j〉〈0j | ⊗ Ij = 1

2

(
I + 1

n

n∑
i=1

Zj ⊗ Ij

)
. (6.31)

By replacing A with its decomposition as shown in Equation (6.12), developing the expression
and counting the number of terms that should be computed on the quantum computer, we can
compute the number of circuit evaluations needed to compute either the global or the local
cost functions. The global cost function CG needs 2m2 −m circuit evaluations, where m is the
number of terms in the decomposition of A (see Equation (6.12)). The local cost function CL
requires (n + 1)m2 − nm circuits, where m as been defined previously and n is the number of
qubits.

The number of quantum circuit executions needed seems to indicate that the global cost
function CG is always the best choice as it always require less quantum circuit execution per
cost function evaluation. But as written in Section 6.2.3, global cost functions suffer from the
Barren plateau phenomenon, which means that the cost function CG will eventually become
untrainable due to vanishing gradients. The O (n) overhead in the number of quantum circuit
evaluations required by the local cost function CL is in fact a necessary condition to avoid the
apparition of the Barren plateau phenomenon.

Figure 6.6 shows that, for easy problems such as identity or trivial, the global cost func-
tion achieve better results than the local cost function. Nevertheless, the global cost function
completely fails to obtain any meaningful results on harder problems such as varying_condition
or heat_opti. This behaviour can also be observed with all the other optimisers used in this
study: SPSA, COBYLA and POWELL.

6.4.2 Dependence on the condition number κ

The condition number κ as defined in Equations (6.16) and (6.17) is an important parameter
of any system of linear equations as it roughly describes the impact of a small change in b on
the solution x. A system with a low condition number κ is said to be well-conditioned whereas
ill-conditioned systems have a high condition number.

Figures 6.7 and 6.8 show the convergence of the COBYLA, POWELL, SPSA and SLSQP
optimisation algorithms when used with the VQLS algorithm on the system defined in Equa-
tion (6.16) with increasing condition numbers.

The expected scaling is ε ∈ O (κ), i.e., the precision ε that can be obtained numerically on
the solution of a system of linear equations that has a condition number κ scales linearly in
κ [205].

6.4. Results of the study 133

(a) identity system. (b) trivial system.

(c) varying_condition system with κ = 1024. (d) heat_opti system.

Figure 6.6: Plots representing the distribution of the error obtained on the final solution with the
global and local cost functions by using a perfect statevector simulator and SLSQP optimiser on 5-qubit
problems. The error on the final solution is obtained by computing the quantum state fidelity between the
exact solution (obtained by classical algorithms) and the solution obtained with the VQLS algorithm.

134 Chapter 6. Variational quantum linear solver

(a) Convergence of the COBYLA optimiser.

(b) Convergence of the SLSQP optimiser.

Figure 6.7: Plot of the VQLS algorithm convergence with different values of κ, the condition number of
the linear system matrix as defined in Equation (6.19), for the linear system defined by the matrix from
Equation (6.18) and a right-hand side b =

(⊗2
i=0 Hi

)
|000〉 and with an ideal simulator. For each of

the optimisers, the condition number plays an important role in the convergence to the correct solution.
Similar results have been obtained for the same setup but by using 10 qubits. Each optimiser was given
1000 iterations and each box-plot contains 100 independent optimisation run.

This expected linear scaling can be seen in Figures 6.7a, 6.7b and 6.8a with the POWELL
optimiser that follows exactly a linear scaling and the SLSQP and COBYLA optimiser that,
for low values of κ, also exhibit the linear scaling ε ∈ O (κ). Nevertheless, both the SLSQP
and COBYLA optimisers fail to get a correct solution for higher values of κ. An interesting
observation is that the COBYLA optimiser obtains systematically a very high-precision solution
for κ 6 25. Then, it starts to experience a few bad solutions that does not change significantly
the distribution of the solution between the first and third quartiles at κ = 26. The optimiser
struggle even more at κ = 27, with the third quartile going from ≈ 10−11 for κ = 26 to > 10−2

for κ = 27. Finally, the distribution of final state infidelities show that the COBYLA optimiser
fails to find a good approximate solution in most of the optimisation runs for κ > 29 with more
than half of the obtained quantum states that have an infidelity above 10−2.

The convergence observed in Figure 6.8b when using the SPSA optimiser does not follow the
expected linear scaling, even at the regime for low values of κ. More interestingly, the SPSA
optimiser does not seem sensitive to an increase in the value of κ and succeed in optimising
successfully most of the optimisation runs to obtain an output quantum state very close to the
solution of the linear system, with median infidelities below 10−8 for κ > 26 and most of the

6.4. Results of the study 135

(a) Convergence of the POWELL optimiser.

(b) Convergence of the SPSA optimiser.

Figure 6.8: Plot of the VQLS algorithm convergence with different values of κ, the condition number of
the linear system matrix as defined in Equation (6.19), for the linear system defined by the matrix from
Equation (6.18) and a right-hand side b =

(⊗2
i=0 Hi

)
|000〉 and with an ideal simulator. For each of

the optimisers, the condition number plays an important role in the convergence to the correct solution.
Similar results have been obtained for the same setup but by using 10 qubits. Each optimiser was given
1000 iterations and each box-plot contains 100 independent optimisation run.

time more than 1
4 of the runs ending up at the ideal solution. This hints us that the SPSA

optimiser might be a good candidate to solve systems of linear equations with a high condition
number κ.

6.4.3 Dependence on the size of the linear system

The size of the linear system to be solved is another variable of interest as our end goal will be
to scale up the linear system to sizes that are not manageable on current classical hardware.

Figure 6.9 shows the number of quantum circuits required for the COBYLA, SLSQP and
POWELL1 optimisers to obtain a solution with an error (infidelity with respect to the ideal
solution) below 10−5. These plots indicate that the VQLS algorithm can converge to a desired
precision in a number of circuit evaluations that scale as O (poly log (n)), where n is the number
of qubits.

1The SPSA optimiser should be excluded from comparison here, see the main caption of Figure 6.9.

136 Chapter 6. Variational quantum linear solver

(a) COBYLA optimiser. (b) SPSA optimiser. See note in main caption.

(c) SLSQP optimiser. (d) POWELL optimiser.

Figure 6.9: Plot of the number of quantum circuit evaluations required with each optimiser to obtain a
precision of ε = 10−5 on the obtained solution of the identity system of linear equations with respect to
the number of qubits (i.e., the size of the problem). Each box is obtained by repeating the optimisation
20 times with a random initialisation point. Note that the SPSA implementation used does not compute
the value of the current optimisation point in order to save a few circuits evaluations. As such, Fig-
ure 6.9b shows the number of quantum circuit evaluations that have been performed for the entirety of the
optimisation run and does not reflect the true performance of SPSA.

6.5. Conclusion 137

(a) Convergence of the COBYLA, SLSQP and
SPSA optimisers on a noisy simulator mimick-
ing the ibm_lagos backend.

(b) Convergence of the COBYLA, SLSQP and
SPSA optimisers on a noisy simulator mimick-
ing the ibmq_bogota backend.

Figure 6.10: Plot of the VQLS algorithm convergence on the identity system using Qiskit noisy simu-
lation capabilities, mimicking the hardware noise of ibm_lagos and ibmq_bogota respectively. POWELL
optimiser performs as bad as SLSQP and is not plotted. Each box plot has been obtained from 20 inde-
pendent optimisation runs with a random initial point.

6.4.4 Running VQLS on noisy hardware

Executing the VQLS algorithm on noisy hardware brings a lot of challenges. One of the most
prominent challenge is due to the different sources of noise present in NISQ quantum hardware
(finite sampling, decoherence, gate errors, state preparation and measurement errors, . . .). The
backend noise directly influence the cost function, that suffers from high errors and as such
becomes harder to optimise correctly.

Figure 6.10 shows the convergence of each optimiser (except POWELL that does not converge
and perform as the SLSQP optimiser) on a noisy simulator mimicking the noise of real quantum
hardware. In this noisy setting, the SPSA optimiser clearly outperforms the other optimisers,
achieving good accuracies even with 2-qubit gate error-rate close to 1%.

It should be noted that the SPSA optimiser requires a lot of quantum circuit executions to
achieve the precision shown in Figure 6.10, and for small budgets (i.e., when one can only execute
a low number of quantum circuits) the COBYLA optimiser seems to obtain better results.

Figure 6.11 show the results obtained on real quantum hardware. Only the COBYLA op-
timiser has been benchmarked due to the relatively low budget of quantum circuit execution
imposed by IBMQ queue system to run on real hardware. The precision obtained on real quan-
tum systems is still insufficient as most of the optimisation runs do not achieve an error below
10−3.

6.5 Conclusion

In this chapter we studied a variational algorithm to solve systems of linear equations. After
a careful choice of problems, we ran multiple simulation to benchmark the dependence of the
algorithm with respect to several parameters such as the condition number of the linear system
κ or its size.

We used our implementation of the VQLS algorithm to run on noisy simulators and real
quantum hardware, that showed that the errors of current NISQ hardware (due to finite sampling
and errors from hardware imperfections) impact significantly the optimisers ability to obtain a
good approximation of the solution. Simulations on noisy simulators showed that the SPSA
optimiser is the most efficient if one has a high budget (i.e., is able to evaluate a high number of

138 Chapter 6. Variational quantum linear solver

Figure 6.11: Precision of the solution obtained by solving the identity system of linear equations on 3
qubits on real quantum hardware by using the COBYLA optimiser.

quantum circuits). If only a low budget of quantum circuit evaluations is available, the COBYLA
optimiser is a good candidate as it is able to converge quicker than the SPSA optimiser.

Running the VQLS algorithm on NISQ devices is still a challenge nowadays and several
improvements will need to be performed to the current quantum hardware in order to hope using
this algorithm in the future. First and foremost, the hardware error rates should be drastically
decreased. An initial amelioration can be made by using error mitigation techniques, but the
challenge remains even with such improvements. Due to the number of quantum circuits needed
to evaluate once the local cost function CL that scales as O

(
(n+ 1)m2), and the variational

nature of the algorithm, efficient classical processing and fast circuit submissions techniques
should be employed to avoid large overheads. The Qiskit Runtime feature, that allows one
to submit a full variational algorithm execution without the need to perform communications
between the local machine and IBM servers at each cost function evaluation, has been introduced
to solve one of these problems.

In conclusion, successfully running the VQLS algorithm to solve interesting linear systems
on real quantum hardware is still a challenge and would require several improvements to the
software and hardware stack to start becoming usable on interesting problems.

Part V

Noise characterisation

139

Chapter

7
Single qubit tomography visual-
isation

Dealing with real quantum hardware is challenging as seen in Chapter 6. Hardware calibrations
are changing rapidly and in an apparently unpredictable manner. Moreover, the hardware
calibrations provided by most vendors are only representing a part of the noise experienced by
the hardware and the noise models available are known to be lacking details due to observed
discrepancies between the noise predicted by the model and the actual hardware behaviour.

As already said in Chapter 4, any optimisation process has to start by measuring extensively
the quantities to optimise. As such, whether our aim is to improve noise models or to lower down
hardware error-rates, we have to start by measuring extensively hardware noise and get a better
understanding of what is happening. The research presented in this chapter is a novel attempt
at measuring the noise experienced by a qubit in order to discover new ways of characterising
it and in turn devise new ways of mitigating noise.

This work has been accepted at the IEEE International Conference on Quantum Computing
and Engineering 2022 as a technical short paper.

Contents
7.1 Introduction . 141
7.2 Single-Qubit State Tomography . 142

7.2.1 Maximum-Likelihood Quantum State Tomography 143
7.2.2 Specialising to Single-Qubit State Tomography 143
7.2.3 Single-Qubit State Tomography Experiment Design 144

7.3 Vector Field Visualisation of Single-Qubit State Tomography 146
7.3.1 Vector Field Visualisation Examples . 146
7.3.2 Visualisation of State Degradation . 148

7.4 Signatures of Single-Qubit Data Corruption 150
7.5 Open-Source Software Implementation 150
7.6 Conclusion . 150

7.1 Introduction
The emergence of commercial Quantum Computing (QC) hardware has made tools for Quantum
Characterisation, Verification, and Validation (QCVV) [206] more important than ever. Espe-
cially in the era of Noisy Intermediate-Scale Quantum (NISQ) [109] devices, QCVV methods
provide the means for QC users to measure and quantify the performance of quantum hardware
platforms and enables consistent comparisons across different hardware architectures. The scope
of QCVV is broad and ranges from testing individual quantum operations (e.g., error rates of
one- and two-qubit gates [207]), verifying small circuits (e.g., Quantum State Tomography [208],
Randomised Benchmarking [209, 210], Gate Set Tomography [211]), to full system-level protocols
(e.g., quantum volume estimation [212], random quantum circuits [213]). Over the years these

142 Chapter 7. Single qubit tomography visualisation

QCVV tools have become an invaluable foundation for benchmarking and measuring progress
of quantum processors [214], culminating in multiple quantum supremacy demonstrations [215,
216].

Quantum state tomography provides a gold standard for QCVV in that it can theoretically
provide an exact reconstruction of the full quantum state of QC hardware, with sufficient data.
At its most basic level, quantum state tomography provides a protocol for combining multiple
observations to uniquely identify the state of a quantum system (i.e., a density matrix, see
Section 1.3.1). On small quantum systems, where data collection and result computations are
feasible, quantum state tomography provides a precise measure of how accurately a quantum
hardware device can execute a desired quantum computation. The strength of quantum state
tomography for QCVV is that it can provide a comprehensive picture of hardware performance.
The drawback is that it requires a prohibitively large amount of data and interpreting the
results can be complex. To mitigate this, many other QCVV protocols (e.g. Randomised
Benchmarking [209, 210], Gate Set Tomography [211]) choose to provide trade offs in data
collection and result details resulting in more scalable QCVV alternatives to quantum state
tomography.

This work explores the use of quantum state tomography to conduct QCVV on commercially
available QC platforms. We focus on quantum state tomography of single-qubits to minimise the
data collection requirements and to develop a protocol that can be executed in parallel for all of
the qubits in a given hardware platform. In addition to the reduced data collection, the limitation
to single-qubit states allows to reduce significantly the complexity when interpreting the results.
The core contributions of this work are a Vector Field Visualisation of single-qubit quantum
state tomography and an open-source software tool for data collection, state reconstruction and
result presentation. Through experiments on QC hardware available in IBM’s Q-Hub, we show
that the proposed method can identify qubit performance features that are not easily identified
and captured with a single value and provide clear signatures that distinguish qubit performance
from both perfect and noisy simulators of this hardware.

This work begins by introducing the foundations of quantum state tomography for a single-
qubit in Section 7.2 and reviews the maximum likelihood estimation method [208] for recon-
structing a quantum state from a finite number of quantum measurements. Section 7.3 then
proposes the vector field visualisation for presenting the single-qubit quantum state tomography
results and illustrates how this visualisation can be leveraged to provide unique insights into
qubit performance. Section 7.4 investigates how the results from different quantum state to-
mography algorithms can be combined with the vector field visualisation to identify signatures
of data corruption. The details of the open-source software are provided in Section 7.5 and the
paper concludes with a discussion of the usefulness of the proposed protocol and future work in
Section 7.6.

7.2 Single-Qubit State Tomography

As explained in Section 1.3.1, the state of a quantum system composed of n qubits is fully
described by a 2n × 2n hermitian matrix ρ, the so-called density matrix. Density matrices are
positive semi-definite, normalised matrices, i.e., 〈φ| ρ |φ〉 ≥ 0 for all |φ〉 ∈ C2n , and Tr [ρ] = 1.

The task of reconstructing density matrices from repetitive observations of these projections
is called Quantum State Tomography (QST). Since the space of density matrices has 4n − 1
real parameters, exact QST can only be done if one records at least 4n− 1 different projections.
Therefore, general QST remains prohibitive for quantum systems of moderate to large size due to
the exponential growth in the number of required observations. However, for single-qubits, QST
is tractable and provides a complete description of the quantum system, making it a powerful
tool for conducting QCVV of individual qubits in QC hardware.

7.2. Single-Qubit State Tomography 143

7.2.1 Maximum-Likelihood Quantum State Tomography

There exists multiple methods (i.e., statistical estimators) that can be used for QST. Each of
these estimators comes with its own advantages and disadvantages such as improved reconstruc-
tion quality with respect to specific metrics, ease of implementation, or computational benefits.
Some popular choices for QST include linear regression based methods [217], nuclear norm con-
strained reconstructions [218] and the Maximum-Likelihood Estimator (MLE) [219]. In this
work, we adopted the MLE method as it is widely used in practice, leverages fundamental sta-
tistical theory principles and can be easily implemented for small quantum systems. However, a
sensitivity study on simulated data suggested that all of these methods produce similar results
under the specific data collection settings used in this work.

The Maximum-Likelihood approach for QST consists in finding the density matrix ρ that will
maximise the probability of realised measurements. Our observables are measures k described
by an ensemble of projectors {Pk} that is the union of all measurement bases or more precisely
the Projection-Valued Measures (PVMs) that we consider. What is recorded, and what serves
as an input to the MLE algorithm, are the number of times, nk, that a particular measure k has
been observed. The log-likelihood function is then expressed in terms of our statistics as

lnP [{nk} | ρ] =
∑
k

nk ln Tr [ρPk] . (7.1)

The reconstructed density matrix ρout is the output of the following concave maximisation
problem on the positive semi-definite cone,

ρout = arg max
ρ<0

Tr[ρ]=1

∑
k

nk ln Tr [ρPk] . (7.2)

Due to the limitations of off-the-shelf optimisation software, in practice, enforcing the positive
semi-definite (PSD) constraint, ρ < 0, may require a specialised optimisation algorithm. One
possible approach to solving Equation (7.2) consists in using local gradient ascent algorithm
interleaved with eigendecomposition based projections onto the SDP cone. However, we will see
that for single-qubit QST, the SDP constraint has a convenient simplification.

7.2.2 Specialising to Single-Qubit State Tomography

The Bloch vector representation of quantum states enables us to significantly simplify QST for
an individual qubit. In this representation, density matrices are encoded as vectors ~a ∈ R3

following the decomposition
ρ = 1

2 (I + ~a · ~σ) (7.3)

where ~σ is the vector of Pauli matrices. The PSD constraint that ρ must satisfy is enforced
through the requirement that its corresponding Bloch vector lies within the unit sphere, i.e.,
‖~a‖ ≤ 1. Projectors are described in a similar fashion by

P~u = 1
2 (I + ~u · ~σ) (7.4)

where ‖~u‖ = 1. Any 1-qubit PVM is composed of only two projectors P~u and P−~u = I−P~u, and
therefore can be identified by a single unit vector ~u. Since we choose to perform the same number
of measurements N in each PVMs, we only need to record the empirical probability p~u = n~u/N
of measuring the observable associated with ~u. The MLE estimator from Equation (7.2) is then
simplified into the following program,

~aout = arg max
‖~a‖≤1

∑
~u

p~u ln (1 + ~a · ~u) + (1− p~u) ln (1− ~a · ~u) . (7.5)

144 Chapter 7. Single qubit tomography visualisation

Ry (θ) Rz (φ)q

Figure 7.1: The state preparation procedure used to initialise a single-qubit quantum state where the
elementary rotations are defined by Ry (θ) = exp (−iY θ/2) and Rz (φ) = (−iZφ/2).

Ry (θ) Rz (φ) R†
z (β) R†

y (α)
z|0〉

c

State preparation Quantum state tomography

Figure 7.2: The state preparation and tomography procedure used to initialise a single-qubit quantum
state.

The maximisation problem in Equation (7.5) is amenable to standard optimisation software
for it is a simple concave non-linear problem in R3 with the cumbersome SDP constraint from
Equation (7.2) replaced with a unit sphere constraint.

7.2.3 Single-Qubit State Tomography Experiment Design

Our main goal is to reconstruct the state of a single qubit programmed to be in the pure state

ρin := Rθ,φ |0〉〈0|R†θ,φ (7.6)

where the rotation matrix Rθ,φ is implemented through elementary rotations with respect to the
y and z axis Rθ,φ = Rz(φ)Ry(θ) as depicted in Figure 7.1. The programmed density matrix ρin
is represented on the Bloch sphere with the unit vector

~ain(θ, φ) =

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 . (7.7)

Using the MLE estimator from Equation (7.5), we will assess the quality of the state preparation
for a specific qubit by comparing ~ain(θ, φ) with the corresponding ~aout for multiple values of φ
and θ.

In our experiments, we are limited to measurements in the computational basis, that is to
say, to the PVM associated with the vector (0, 0, 1). To remedy to this issue, we rotate the qubit
before measuring it with the matrix R†α,β to emulate a PVM on

~u =

sin(α) cos(β)
sin(α) sin(β)

cos(α)

 . (7.8)

The rotation matrix is again implemented with elementary rotations R†α,β = Ry(−α)Rz(−β).
The complete circuit is shown in Figure 7.2.

Conducting QST on a single qubit requires measurements from at least 3 different linearly
independent PVMs. One natural choice are the Pauli PVMs along canonical axes, represented
by the set of values

(α, β) ∈ {(0, 0), (π/2, 0), (π/2, 0)} . (7.9)

7.2. Single-Qubit State Tomography 145

P0

P1
P2

T0

T1

T2T3

Figure 7.3: The Bloch sphere representation of PVMs that can be considered for single-qubit state
tomography. The Pauli operators (left) provide a minimal set of PVMs while the tetrahedral PVMs used in
this work (right) provides data redundancy and improved reconstruction accuracy. In this figure, P0 = |0〉,
P1 = 1√

2 (|0〉+ |1〉), P2 = 1√
2 (|0〉+ i |1〉), T0 = |0〉 and Tk = 1√

3 |0〉+
√

2
3e
i 2

3kπ |1〉 for k ∈ {1, 2, 3}.

However, having more than the minimum number of PVMs can be beneficial in reducing
the statistical error in state reconstruction. In this work we leverage a tetrahedral set of PVMs
using

(α, β) ∈
{

(0, 0) ,
(

cos−1
(−1

3

)
, 0
)
,

(
cos−1

(−1
3

)
,
2π
3

)
,

(
cos−1

(−1
3

)
,
−2π

3

)}
(7.10)

to provide a balance between mitigating statistical error and data collection requirements. The
Bloch sphere vectors representing both the Pauli and tetrahedral PVMs are depicted in Fig-
ure 7.3.

The experimental procedure for conducting single-qubit QST proposed in this work uses the
tetrahedral PVMs with the MLEmodel from Equation (7.5) as follows. For a given state ~ain (θ, φ)
on the Bloch sphere, four variants of the tomography circuit (see Figure 7.2) are executed,
one for each (α, β) combination in the tetrahedral PVMs. State measurement statistics are
collected for each of these circuits and converted into empirical probabilities p~u providing the
information required for posing the MLE problem from Equation (7.5). The optimal solution to
Equation (7.5), ~aout, encodes the most likely density matrix that was implemented by the qubit
at the state ~ain (θ, φ).

An important subtlety in using a QST workflow in practice is to quantify how the accuracy
of the empirical probability impacts the solution quality of model Equation (7.5). On a quantum
hardware platform one only has access to a finite number of measurements, N (a.k.a., shots),
to estimate the empirical probabilities p~u. If the number of measurements is not sufficient,
finite sample errors can yield significant artifacts in ~aout. We performed a sensitivity study to
quantify this statistical error on simulated data. For a given prepared state ~ain (θ, φ), we sample
N = 20, 000 observations for each of the tetrahedral PVMs, and then reconstruct ~aout with our
QST MLE algorithm. We repeat this procedure 104 times to accumulate an empirical histogram
of the statistical error for each state, ain (θ, φ), and estimate the 99-th percentile of the Euclidean
distance error ε (i.e., ε ∈ R+ such as P [‖~aout − ~ain (θ, φ) ‖ ≤ ε] = 0.99). We find empirically that
ε ≤ 0.02 for all angles (θ, φ). Therefore, throughout this work we standardised on N = 20, 000
observations per circuit to ensure that statistical fluctuations will only contribute to an error in
the second digit, with high confidence.

146 Chapter 7. Single qubit tomography visualisation

7.3 Vector Field Visualisation of Single-Qubit State Tomogra-
phy

To illustrate the potential usefulness of single-qubit QST, this work investigates two questions
arising in QCVV: (1) how accurate is single-qubit state preparation; (2) how consistent is the
state preparation quality throughout the Bloch sphere. The first question amounts to quantifying
the difference between the ideal quantum state, ~ain(θ, φ), and the reconstructed quantum state
resulting from the QST protocol, ~aout. The second question consists of repeating the state
tomography protocol for a wide variety of possible state preparations and investigating how
the reconstructed states vary. Throughout this section we develop the idea of a vector field
visualisation for presenting the results of single-qubit QST to visually investigate these two
questions. A variety of examples are then used to illustrate the usefulness of the proposed
approach.

For a given single-qubit state ~ain(θ, φ), the tomography procedure described in Section 7.2
yields a density matrix ρout in the form of a vector in ~aout ∈ R3. Many metrics can be computed
from ~aout (or equivalently ρout) such as the quantum state purity

γ = Tr
[
ρ2

out

]
(7.11)

or its fidelity with respect to the ideal pure quantum state ρin

F (ρin, ρout) = Tr
[√√

ρinρout
√
ρin

]
. (7.12)

A natural way to visualise ~aout is a point within the Bloch sphere using the relation in
Equation (7.3). However, this representation is difficult to interpret without an interactive visu-
alisation as many points within the sphere are co-located in standard orthographic projections,
such as Figure 7.3. In particular, it is hard to distinguish if a given point is “on the front” or “on
the back” of the sphere, it is hard to distinguish a pure state, that is represented on the surface
of the Bloch sphere, from a mixed state, that is represented strictly within the Bloch sphere.

This work carefully combines three visualisation tools to address the challenge of presenting
this data. The first idea is to embed the single qubit states on the two-dimensional plane using
established spherical projection methods. In this work we leverage the Robinson projection to
place the QST results on a two-dimensional plot.1 The second idea is to leverage a heat-map on
this 2-dimensional representation to visualise a key metric of interest, such as the reconstructed
state’s purity or fidelity. Throughout this work the colour of the plot is used to present the
state’s purity. The third idea is to use arrows to illustrate the locations difference between
the ideal and reconstructed states, with each arrow starting at the ideal state and ending at
the corresponding reconstructed state, projected onto the surface of the Bloch sphere. This
communicates the rotational error that occurs in the reconstructed state. Overall, we call this
representation of single-qubit QST the Vector Field Visualisation (VFV).

7.3.1 Vector Field Visualisation Examples

To verify the correctness of the proposed VFV approach, and to illustrate its usefulness, we
begin with a series of QST studies of 200 quantum states spaced approximately equidistantly
around the Bloch sphere using the ibm_lagos quantum chip. The results are presented in
Figure 7.4. As a validation exercise, we begin by performing the full QST protocol on an ideal
quantum simulator in Figure 7.4a. This procedure yields reconstructed states with very high

1Note that any 2-dimensional projection of a 3-dimensional sphere is bound to imperfectly represent some
of the features. The Robinson projection is a compromise and is neither angle-preserving nor equal-area, but a
balance designed to reduce the overall perceived distortion.

7.3. Vector Field Visualisation of Single-Qubit State Tomography 147

(a) Data obtained on an ideal simulator.

(b) Data obtained on a noisy simulator configured with the calibration data of
ibm_lagos at the time of hardware data collection.

(c) Data obtained on ibm_lagos.

Figure 7.4: Vector Field Visualisations of the reconstructed states using the single-qubit state tomography
protocol from Section 7.2 using 20, 000 shots on qubit 1 of ibm_lagos. The heat-map indicates the purity
of the reconstructed quantum state and the horizontal red line in the colour scale indicates the average
purity of the states.

148 Chapter 7. Single qubit tomography visualisation

Ry (θ) Rz (φ) Delay (t)q

Figure 7.5: Quantum state-preparation circuit used to visualise the effect of state degradation over time.
The original protocol is obtained by setting the delay time t = 0. Increasing t shows the errors that arise
in idle open-quantum systems. On IBM Quantum chips, t is given as a multiple of a specific time dt. On
ibm_lagos, dt = 2

9 ns.

quality (purity of 0.999 on average) with no rotational errors, confirming the correctness of the
workflow’s implementation. The slight variability in these results illustrates the small errors
that occur due to finite samples.

The second experiment, Figure 7.4b, consists in performing QST on data obtained from a
simulator of a noisy quantum computer. IBM’s Q-Hub tracks various performance properties of
their qubits (e.g., gate and measurement errors) and provides an interface to perform noisy sim-
ulations using these properties. As expected, this procedure yields less consistent reconstructed
states (purity 0.983, on average). Most notably, the simulated noisy qubit performance shows
no rotational errors and is very homogeneous regardless of the quantum state that is being
inspected.

The third and most interesting experiment, Figure 7.4c, consists in performing the state
tomography protocol with real data from the ibm_lagos quantum chip. Three interesting ob-
servations can be made when comparing this result to the two simulations: (1) This is the first
data-set where the vector field arrows are visible, indicating a type of rotational error that is
not captured by the simulations; (2) The purity of the reconstructed states is more heteroge-
neous than the simulators; (3) the purity of the reconstructed states is similar in average to the
noisy simulator (0.983 compared to 0.972) but has a notably higher standard deviation (0.004
compared to 0.013). All of these observations indicate the potential for a state-dependent er-
ror model to better capture this qubit’s performance. Overall, the value of the VFV approach
is highlighted by the distinct motifs that are clear in each of these figures and may provide
inspiration for new qubit performance measures and noise mitigation schemes.

7.3.2 Visualisation of State Degradation

One of the primary uses of data visualisation tools like the VFV is to examine features of qubit
performance that are not captured by current QC simulators. This can provide inspiration
for which features could make simulators more faithful proxies of real-world QC hardware. To
illustrate this point, this section explores the impact of adding a delay(t) instruction into the
state preparation protocol, as shown in Figure 7.5. In this circuit the state preparation procedure
used in the original protocol is now followed by a delay during which the qubit experiences the
effects of an open-quantum system before the QST measurements are performed. Note that this
delayed QST experiment would produce identical results in the case of closed-system simulations
that are considered in Figure 7.4. This type of experiment is only interesting on QC hardware
or simulations of open-quantum systems [220, 221].

Results of the time delay experiments are shown in Figure 7.6. Two notable observations
can be made from these results. First we can see that the average of the state’s purity degrades
steadily, starting with an average value of 0.972, degrading to 0.959 and then 0.945 as the delay
duration is increased. The second observation is that the rotational error of the state is also
increasing steadily and non-uniformly with time; notice how the rotational bias at the top of
the VFV (i.e., close to the |0〉 state) is very different from the bottom (i.e., close to the |1〉
state). It is also surprising to see a systematic rotational shift from left to right that appears to
be state-dependent. Although this study is only a proof-of-principle, it highlights the potential
usefulness of VFV for designing models of open-quantum systems and provides some intuition
for what decoherence looks like on this QC hardware.

7.3. Vector Field Visualisation of Single-Qubit State Tomography 149

(a) Data obtained on ibm_lagos with a delay of t = 0 dt.

(b) Data obtained on ibm_lagos with a delay of t = 800 dt.

(c) Data obtained on ibm_lagos with a delay of t = 1600 dt.

Figure 7.6: Vector Field Visualisations of the reconstructed states of the state preparation with delay
circuit using 20, 000 shots on qubit 1 of ibm_lagos using three different delay values. The heat-map
indicates the purity of the reconstructed quantum state and the horizontal red line in the colour scale
indicates the average purity of the states.

150 Chapter 7. Single qubit tomography visualisation

7.4 Signatures of Single-Qubit Data Corruption
In this section we explore how different QST reconstruction methods can be combined to iden-
tify additional issues with the performance of individual qubits. In particular, we compare
reconstructed states using the MLE method with those produced by the Linear Regression (LR)
method [217]. In short, LR QST identifies a density matrix that minimises the difference be-
tween the observed and predicted measurement probabilities. For a single qubit system, the LR
method solves the following optimisation task on the Bloch sphere,

~aLR
out = arg min

‖~a‖≤1

∑
~u

(1 + ~u · ~a− 2p~u)2. (7.13)

Using the statistical error analysis from Section 7.2.3, we find that the 99-th percentile of the
Euclidean distance error of LR is less than 0.02 for 20,000 observations, which is comparable to
the MLE method.

The key insight of this section is that the difference in purity between the reconstructed
states of MLE and LR should be very small, but in practice is it not always the case. Specif-
ically, when using identical input statistics, the 99-th percentile of the Euclidean distance be-
tween the state estimates of MLE and LR is also less than 0.02 with 20,000 observations (i.e.,
P
[∣∣∣‖~aLR

out‖ − ‖~aMLE
out ‖

∣∣∣ ≤ 0.02
]
≥ 0.99). However, in practice, we observe that some qubits pro-

duce data where the differences between the quantum states reconstructed by MLE and LR
cannot be reasonably explained by statistical fluctuations, as shown in Figure 7.7. This suggests
that the the measured statistics of these qubits are corrupted after the state preparation occurs.
It is likely that the elementary rotations Ry(−α) and Rz(−β) used for changing measurement
basis introduce state-dependant errors that are incompatible with the QST models considered in
this work. Nevertheless, the analysis in Figure 7.7 indicates that combining multiple tomography
methods can be a useful and effective tool for identifying signatures of data corruption.

7.5 Open-Source Software Implementation
In the last couple of years, IBM’s Qiskit Python package has emerged as a de facto standard
for gate-based QC and can be used to access a wide variety of hardware platforms, even beyond
those provided by IBM. As such, the libraries developed in this work leverage Qiskit for data
collection on QC hardware. Even though Qiskit is the only supported framework for the moment,
particular attention has been given to enable extending to other frameworks in the future.

The single-qubit QST protocol presented in this work is organised into two packages: sqt and
sqmap. The first package, sqt (short for Single-Qubit Tomography), implements all the functions
and interfaces to perform a single-qubit QST efficiently. In particular, it provides various single-
qubit tomography basis and quantum state reconstruction methods. sqt also provides ways to
parallelise a single-qubit experiment over all the available qubits in QC hardware for a quick
assessment of the qubit performance across a full-chip. The second package, sqmap (short for
Single-Qubit Map), provides various ways of visualising single-qubit tomography results obtained
with sqt, such as the VFV figures presented in this work.

All of the QST procedures and plotting facilities used in this paper are available as open-
source at https://github.com/nelimee/sqt and https://github.com/nelimee/sqmap and
can be used freely by anyone to benchmark their QC platform. Installation of these packages
can be done with the official Python package manager pip.

7.6 Conclusion
As the variety of quantum computing platforms continues to increase so does the need of tools
to inspect their performance characteristics. In this work we have demonstrated that quantum

https://github.com/nelimee/sqt
https://github.com/nelimee/sqmap

7.6. Conclusion 151

(a) Data obtained on ibmq_belem and reconstructed with MLE.

(b) Data obtained on ibmq_belem and reconstructed with LR.

(c) Reconstructed quantum states where the absolute purity difference between MLE
and LR reconstruction methods is above the 0.02 threshold.

Figure 7.7: A comparison of the quantum state reconstruction methods MLE and LR on qubit 3 of
ibmq_belem, where the reconstruction methods do not entirely agree. Each post-processing method is
given the same raw data from ibmq_belem.

152 Chapter 7. Single qubit tomography visualisation

state tomography of individual qubits is a viable approach for inspecting qubit performance,
although similar procedures are unlikely to scale to much larger systems due to the notable
data collection requirements. Through the careful design of data collection, state reconstruction
and result visualisation, this work illustrates that the proposed QCVV procedures can highlight
elusive patterns in qubit performance that are difficult to capture with simpler metrics. The
results indicate that there is room for improvement on the simulation models that are currently
used and highlight the importance of modelling open-quantum system effects at medium time
scales. A careful comparison different tomography methods also indicates that more general
models for quantum state tomography should be considered to better capture the exotic effects
that can be observed is current QC platforms. We hope that the proposed QCVV procedure
and vector field visualisation will be a valuable tool for the quantum computing community in
evaluating qubit performance and have provided the implementation as open-source to support
that aim.

Part VI

Outlooks and conclusion

153

Chapter

8
Conclusion

Since the introduction of the Harrow-Hassidim-Lloyd (HHL) algorithm in 2008, the field of
quantum computing has seen a lot of work targeting scientific computing problems. From new
algorithms to drastic improvements of the software stack, the state of the quantum computing
field has experienced tremendous changes. We conclude this document by restating some of the
most important results obtained in this thesis and pointing out promising works and important
problems related to the application of quantum computing to the field of scientific computations.

8.1 Important results
New software able to profile quantum programs. In Chapter 3 we saw that quantum
circuits resulting from the implementation of quantum algorithms can contain more quantum
gates than could potentially be printed in this manuscript (several billions). Such implemen-
tations often result from the nested calls of several quantum algorithms. Moreover, modern
software development “best-practices” encourage the use of self-contained and short “functions”
which, if followed when implementing quantum algorithms, lead to even more levels of nesting
and larger call-graphs. The task of debugging and optimising these often very large implemen-
tations is made unnecessarily complex by the lack of efficient, synthetic and human-readable
visualisation. We have fixed this problem by providing qprof, an open-source, multi-framework,
and efficient profiler able to quickly analyse complex quantum circuits and output reports in
different human-readable formats.

Quantum program compilation. We showed in Chapter 5 that quantum program compilers
can be substantially improved by taking into account the most up to date hardware calibrations
and using gates that do not change the qubit ordering as the Bridge gate. New work tackling the
problem of compiling quantum circuits introduced problem-specific compilation algorithms, able
to generate optimised quantum circuits for specific applications. But as noted in Section 4.6.2,
most of the compilers targeting quantum programs are only able to work on “flattened” quantum
circuits which (1) is radically different of the approach took by classical compilers and (2) will
lead to large inefficiencies for large quantum circuits.

Improved quantum hardware characterisation. Chapter 7 showed a new method to reli-
ably visualise errors happening on single-qubit operations. In this work, we show that there is a
measurable and consistent noise affecting the qubit state that is not accounted for in hardware
calibration and hardware noise models. Such works are the first step for an improved under-
standing of the errors a quantum hardware can be subject to. It has the potential to lead to
improvements of the error models used to simulate quantum noise and can help devising ways
to correct these errors directly at the hardware level, either by tuning each qubit or by fixing
the physical process causing these errors.

Implementation of quantum “oracles”. When analysing the quantum wave equation solver
implementation presented in Chapter 3 we realised that “oracles”, quantum circuits that encodes

156 Chapter 8. Conclusion

classical information such as a matrix entries in a format usable by a quantum computer, were
the major source of inefficiencies of the implementation. Aside from the fact that the tasks of
prior analysis, implementation and debugging leading to a correct oracle implementation were
very time consuming and extremely complex, our analysis with qprof showed that our initial
implementation was inefficient. The implementation only reached a “reasonably optimised” state
after a few manual iterations, which increased again the time spent implementing the oracle.
These observations indicate that automatic generation approaches might be worth exploring.
As noted in Section 3.5, a few work (HODL [112] and the Classiq start-up [113]) have already
started to explore these approaches, and more work should be performed to evaluate the quality
of the generated implementations.

Improvements in variational quantum algorithms. As shown in Chapter 6, variational
quantum algorithms are still facing challenges preventing them from scaling to bigger problem
sizes. Part of these challenges are due to hardware imprecisions and can be partly mitigated with
the help of quantum error mitigation techniques such as dynamical decoupling or measurement
error mitigation. But the Barren plateau phenomenon is imposing drastic requirements to
both the cost function and the ansatz used, as well as good initialisation strategies. The Barren
plateau phenomenon implications on the ability of variational quantum algorithms to solve large
problem is a crucial research direction to continue improving our understanding of variational
algorithms.

8.2 Research perspectives

The work presented in this manuscript improved over the state of the art in several domains,
from compilation of quantum programs to the analysis of complex quantum programs. This
section present a few of the research perspectives that we consider to be interesting paths to
explore in the future.

“Hierarchical” quantum compilation. Most of the state of the art compilers for quan-
tum programs have been designed to compile a “flattened” quantum circuit, only containing
hardware-native quantum gates. In order to perform the compilation, they start the process by
“unrolling” the quantum subroutines, a step also called “inlining” in classical computing and
that consist in replacing a call to a given subroutine by its implementation.

This behaviour is beneficial for very small quantum circuits as it allows the compiler to have a
global vision of all the quantum gates present in the circuit and enable the possibility to perform
even more optimisations. But such an approach for larger circuits can lead to compiling the
exact same sequence of gates several times (i.e., missed opportunities) and makes it impossible
to use some tools (such as qprof) to analyse the compiled program.

We think that a hierarchical compiler able to compile quantum programs without “flattening”
them unconditionally, inspired from what is done in classical compiler with the processes of
selective inlining of functions, will improve drastically the performance of current quantum
compilers and may even allow these compilers to improve the overall optimisation by selectively
spending more computational time optimising some high-cost routines.

New initiatives such as the Quantum Intermediate Representation (QIR) or OpenQASM 3.0
that try to introduce new standards to represent quantum computation will help standardising
compilers and might even be able to leverage existing compiler infrastructures like LLVM to
compile quantum programs.

Improvements to qprof. The qprof and qcw tools got a few very positive feedback from the
quantum computing community but have some limitations. One of the first and most evident

8.2. Research perspectives 157

improvement that would benefit to the whole community would be to increase the number of
frameworks supported by qcw, the quantum circuit wrapper. Implementing a plugin to support
OpenQASM 3.0 would allow qprof to support all the quantum computing frameworks capable
of exporting to OpenQASM 3.0, which we think will be the case of most frameworks as the
OpenQASM 3.0 language will probably become a standard.

Adding new exporters to qprof is also a very interesting as it would be directly usable for any
quantum computing framework already implemented. We particularly think that Flamegraphs
would be a very good improvement.

Finally, we would like to improve the internals of qprof to allow the benchmark of non-
additive quantities such as an estimate of the error-rate of each subroutine or the topology
required to execute each subroutine.

Improvement of the development ecosystem. When performing the different implemen-
tations presented and analysed in Chapters 3 and 6, we found that a lot of the classical tools
made to help developers were missing to the quantum ecosystem. For example, there is currently
no standard way to distribute implementations, analogous to libraries in classical computing.
This is mostly due to the fact that there is no standard interface or language in the quantum
computing field. The introduction and universal recognition of a standard will take time, but
will help tremendously the field and community.

Answering the question of inputs and outputs. The problem of constructing oracles is
the visible face of a greater and more fundamental problem in quantum computing: how can
we input classical data into a quantum computer? Here classical data can be anything from the
coefficients of a matrix (as studied in Chapter 3) or the right-hand side of a system of linear
equations (as needed in the VQLS algorithm from Chapter 6).

A very related problem consist in performing the opposite operation: how can we “output”
data from a quantum computer? Or more precisely, what classical problems only requires the
type of information that can be extracted from a quantum computer at a reasonable cost?

We think that these questions of input and output are crucial to answer for the future of
quantum computing, even more importantly for its potential applications to scientific computing
in which one needs to encode right-hand sides of systems of linear equations, initial or boundary
conditions of partial differential equations or even constraints for optimisation problems.

158 Chapter 8. Conclusion

Bibliography

References for Chapter 1: Introduction to Quantum Computing
[1] Max Planck and Morton Masius. The theory of heat radiation. "Author’s bibliography":

p. 216-217. Philadelphia: P. Blakiston’s Son & Co., 1914, xiv p., 1 l., 225 p. Cited on
page 5.

[2] W. Heisenberg. “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und
Mechanik”. In: Zeitschrift fur Physik 43.3-4 (Mar. 1927), pp. 172–198. doi: 10.1007/
BF01397280 Cited on page 6.

[3] Paul Adrien Maurice Dirac. The principles of quantum mechanics. English. Oxford:
Clarendon Pr., 1930 Cited on page 6.

[4] John von Neumann. “Mathematical Foundations of Quantum Mechanics”. In: 1955 Cited
on pages 6, 8.

[5] A. M. Turing. “On Computable Numbers, with an Application to the Entscheidungsprob-
lem”. In: Proceedings of the London Mathematical Society s2-42.1 (1937), pp. 230–265.
doi: https://doi.org/10.1112/plms/s2-42.1.230. eprint: https://londmathsoc.
onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-42.1.230 Cited on page 6.

[6] Paul Benioff. “The computer as a physical system: A microscopic quantum mechanical
Hamiltonian model of computers as represented by Turing machines”. In: Journal of
Statistical Physics 22.5 (May 1980), pp. 563–591. doi: 10.1007/bf01011339 Cited on
page 6.

[7] Paul Benioff. “Quantum mechanical hamiltonian models of turing machines”. In: Journal
of Statistical Physics 29.3 (Nov. 1982), pp. 515–546. doi: 10.1007/bf01342185 Cited on
page 6.

[8] Richard P. Feynman. “Simulating physics with computers”. In: International Journal
of Theoretical Physics 21.6 (June 1982), pp. 467–488. issn: 1572-9575. doi: 10.1007/
BF02650179 Cited on page 6.

[9] David Deutsch. “Quantum theory, the Church-Turing principle and the universal quan-
tum computer”. In: Proceedings of the Royal Society A 400.1818 (1985), pp. 97–117. doi:
10.1098/rspa.1985.0070. eprint: https://royalsocietypublishing.org/doi/10.
1098/rspa.1985.0070 Cited on pages 6, 7.

[10] David Deutsch and Richard Jozsa. “Rapid solution of problems by quantum compu-
tation”. In: Proceedings of the Royal Society of London. Series A: Mathematical and
Physical Sciences 439.1907 (Dec. 1992), pp. 553–558. doi: 10.1098/rspa.1992.0167
Cited on page 6.

[11] Lov K. Grover. “A fast quantum mechanical algorithm for database search”. In: (May
1996). eprint: quant-ph/9605043v3 Cited on page 6.

https://doi.org/10.1007/BF01397280
https://doi.org/10.1007/BF01397280
https://doi.org/https://doi.org/10.1112/plms/s2-42.1.230
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-42.1.230
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-42.1.230
https://doi.org/10.1007/bf01011339
https://doi.org/10.1007/bf01342185
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1098/rspa.1985.0070
https://royalsocietypublishing.org/doi/10.1098/rspa.1985.0070
https://royalsocietypublishing.org/doi/10.1098/rspa.1985.0070
https://doi.org/10.1098/rspa.1992.0167
quant-ph/9605043v3

160 Chapter 8. Conclusion

[12] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer”. In: SIAM J. Sci. Statist. Comput. 26 (1997) 1484
(Sept. 1995). doi: https://doi.org/10.1137/S0097539795293172. eprint: quant-
ph/9508027v2 Cited on page 6.

[13] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum Algorithm for Linear
Systems of Equations”. In: Physical Review Letters 103 (15 Oct. 2009). Phys. Rev. Lett.
vol. 15, no. 103, pp. 150502 (2009). doi: 10.1103/PhysRevLett.103.150502. eprint:
0811.3171v3 Cited on pages 6, 26, 31, 122.

[14] Edward Farhi et al. “A Quantum Adiabatic Evolution Algorithm Applied to Random
Instances of an NP-Complete Problem”. In: Science 292.5516 (2001), pp. 472–475. doi:
10.1126/science.1057726. eprint: https://www.science.org/doi/pdf/10.1126/
science.1057726 Cited on page 7.

[15] Dorit Aharonov et al. “Adiabatic Quantum Computation Is Equivalent to Standard
Quantum Computation”. In: SIAM Review 50.4 (2008), pp. 755–787. doi: 10.1137/
080734479. eprint: https://doi.org/10.1137/080734479 Cited on page 7.

[16] W. van Dam, M. Mosca, and U. Vazirani. “How powerful is adiabatic quantum compu-
tation?” In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science.
2001, pp. 279–287. doi: 10.1109/SFCS.2001.959902 Cited on page 7.

[17] Andris Ambainis and Oded Regev. An Elementary Proof of the Quantum Adiabatic The-
orem. 2004. doi: 10.48550/ARXIV.QUANT-PH/0411152 Cited on
page 7.

[18] Robert Raussendorf and Hans J. Briegel. “A One-Way Quantum Computer”. In: Phys.
Rev. Lett. 86 (22 May 2001), pp. 5188–5191. doi: 10.1103/PhysRevLett.86.5188 Cited
on page 7.

[19] Hans J. Briegel and Robert Raussendorf. “Persistent Entanglement in Arrays of Inter-
acting Particles”. In: Phys. Rev. Lett. 86 (5 Jan. 2001), pp. 910–913. doi: 10.1103/
PhysRevLett.86.910 Cited on page 7.

[20] Robert Raussendorf, Daniel E. Browne, and Hans J. Briegel. “Measurement-based quan-
tum computation on cluster states”. In: Phys. Rev. A 68 (2 Aug. 2003), p. 022312. doi:
10.1103/PhysRevA.68.022312 Cited on page 7.

References for Chapter 2: Scientific computing and quantum
computing
[13] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum Algorithm for Linear

Systems of Equations”. In: Physical Review Letters 103 (15 Oct. 2009). Phys. Rev. Lett.
vol. 15, no. 103, pp. 150502 (2009). doi: 10.1103/PhysRevLett.103.150502. eprint:
0811.3171v3 Cited on pages 6, 26, 31, 122.

[21] Peter Lynch. “The origins of computer weather prediction and climate modeling”. In:
Journal of Computational Physics 227.7 (2008). Predicting weather, climate and extreme
events, pp. 3431–3444. issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2007.
02.034 Cited on page 18.

[22] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Jan. 2003. doi: 10.1137/1.9780898718003 Cited on pages 21, 22.

[23] Stefan Heinz. “A review of hybrid RANS-LES methods for turbulent flows: Concepts and
applications”. In: Progress in Aerospace Sciences 114 (2020), p. 100597. issn: 0376-0421.
doi: https://doi.org/10.1016/j.paerosci.2019.100597 Cited on page 21.

https://doi.org/10.1137/S0097539795293172
quant-ph/9508027v2
quant-ph/9508027v2
https://doi.org/10.1103/PhysRevLett.103.150502
0811.3171v3
https://doi.org/10.1126/science.1057726
https://www.science.org/doi/pdf/10.1126/science.1057726
https://www.science.org/doi/pdf/10.1126/science.1057726
https://doi.org/10.1137/080734479
https://doi.org/10.1137/080734479
https://doi.org/10.1137/080734479
https://doi.org/10.1109/SFCS.2001.959902
https://doi.org/10.48550/ARXIV.QUANT-PH/0411152
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.910
https://doi.org/10.1103/PhysRevLett.86.910
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1103/PhysRevLett.103.150502
0811.3171v3
https://doi.org/https://doi.org/10.1016/j.jcp.2007.02.034
https://doi.org/https://doi.org/10.1016/j.jcp.2007.02.034
https://doi.org/10.1137/1.9780898718003
https://doi.org/https://doi.org/10.1016/j.paerosci.2019.100597

8.2. Research perspectives 161

[24] TOP500 ranking. Supercomputer Fugaku. https://www.top500.org/system/179807/.
Accessed: 2022-09-15. Sept. 2022 Cited on page 24.

[25] Dominic W. Berry et al. “Efficient Quantum Algorithms for Simulating Sparse Hamiltoni-
ans”. In: Communications in Mathematical Physics 270 (2 Jan. 2007). Communications in
Mathematical Physics 270, 359 (2007), pp. 359–371. doi: 10.1007/s00220-006-0150-x.
eprint: quant-ph/0508139v2 Cited on pages 24, 25, 32–35, 51, 52.

[26] Andrew M. Childs and Robin Kothari. “Simulating Sparse Hamiltonians with Star De-
compositions”. In: Theory of Quantum Computation, Communication, and Cryptogra-
phy. Ed. by Wim van Dam, Vivien M. Kendon, and Simone Severini. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 94–103. isbn: 978-3-642-18073-6 Cited on page 25.

[27] Stuart Hadfield and Anargyros Papageorgiou. “Divide and conquer approach to quantum
Hamiltonian simulation”. In: New Journal of Physics 20.4 (Apr. 2018), p. 043003. doi:
10.1088/1367-2630/aab1ef Cited on page 25.

[28] Andrew M. Childs, Aaron Ostrander, and Yuan Su. “Faster quantum simulation by ran-
domization”. In: Quantum 3 (Sept. 2019), p. 182. issn: 2521-327X. doi: 10.22331/q-
2019-09-02-182 Cited on page 25.

[29] Andrew M. Childs et al. “Toward the first quantum simulation with quantum speedup”.
In: Proceedings of the National Academy of Sciences 115.38 (Sept. 2018), pp. 9456–9461.
issn: 1091-6490. doi: 10.1073/pnas.1801723115 Cited on pages 25, 70.

[30] Dominic W. Berry and Andrew M. Childs. “Black-box Hamiltonian Simulation and Uni-
tary Implementation”. In: Quantum Info. Comput. 12.1-2 (Jan. 2012). Quantum Infor-
mation and Computation 12, 29 (2012), pp. 29–62. issn: 1533-7146. doi: 10.26421/
QIC12.1-2. eprint: 0910.4157v4 Cited on pages 25, 32, 34, 35.

[31] Dominic W. Berry et al. “Exponential Improvement in Precision for Simulating Sparse
Hamiltonians”. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory
of Computing. STOC ’14. New York, New York: Association for Computing Machinery,
2014, pp. 283–292. isbn: 9781450327107. doi: 10.1145/2591796.2591854 Cited on
pages 25, 34, 35.

[32] Dominic W. Berry et al. “Simulating Hamiltonian Dynamics with a Truncated Taylor
Series”. In: Physical Review Letters 114 (9 Mar. 2015). Phys. Rev. Lett. 114, 090502
(2015). doi: 10.1103/PhysRevLett.114.090502. eprint: 1412.4687v1 Cited on pages 25,
32, 34, 35.

[33] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. “Hamiltonian Simulation with
Nearly Optimal Dependence on all Parameters”. In: 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science. Proceedings of the 56th IEEE Symposium on Foun-
dations of Computer Science (FOCS 2015), pp. 792-809 (2015). Oct. 2015, pp. 792–809.
doi: 10.1109/FOCS.2015.54. eprint: 1501.01715v3 Cited on pages 25, 33–35.

[34] Guang Hao Low and Isaac L. Chuang. “Optimal Hamiltonian Simulation by Quantum
Signal Processing”. In: Physical Review Letters 118 (1 Jan. 2017). Phys. Rev. Lett. 118,
010501 (2017). doi: 10.1103/PhysRevLett.118.010501. eprint: 1606.02685v2 Cited on
pages 25, 32, 34, 35.

[35] Guang Hao Low and Isaac L. Chuang. “Hamiltonian Simulation by Qubitization”. In:
Quantum 3 (None July 2019). doi: 10.22331/q-2019-07-12-163 Cited on page 25.

[36] Andris Ambainis. “Variable time amplitude amplification and quantum algorithms for
linear algebra problems”. In: STACS’12 (29th Symposium on Theoretical Aspects of Com-
puter Science). Ed. by Thomas Wilke Christoph Dürr. Vol. 14. Paris, France: LIPIcs, Feb.
2012, pp. 636–647 Cited on page 26.

https://www.top500.org/system/179807/
https://doi.org/10.1007/s00220-006-0150-x
quant-ph/0508139v2
https://doi.org/10.1088/1367-2630/aab1ef
https://doi.org/10.22331/q-2019-09-02-182
https://doi.org/10.22331/q-2019-09-02-182
https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.26421/QIC12.1-2
https://doi.org/10.26421/QIC12.1-2
0910.4157v4
https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1103/PhysRevLett.114.090502
1412.4687v1
https://doi.org/10.1109/FOCS.2015.54
1501.01715v3
https://doi.org/10.1103/PhysRevLett.118.010501
1606.02685v2
https://doi.org/10.22331/q-2019-07-12-163

162 Chapter 8. Conclusion

[37] B. D. Clader, B. C. Jacobs, and C. R. Sprouse. “Preconditioned quantum linear sys-
tem algorithm”. In: (Jan. 2013). Phys. Rev. Lett. 110, 250504 (2013). doi: 10.1103/
PhysRevLett.110.250504. eprint: 1301.2340v4 Cited on page 26.

[38] Scott Aaronson. “Read the fine print”. In: Nature Physics 11.4 (Apr. 2015), pp. 291–293.
doi: 10.1038/nphys3272 Cited on pages 26, 122.

[39] Andrew M. Childs and Nathan Wiebe. “Hamiltonian Simulation Using Linear Combina-
tions of Unitary Operations”. In: (Feb. 2012). Quantum Information and Computation
12, 901-924 (2012). doi: 10.26421/QIC12.11-12. eprint: 1202.5822v1 Cited on pages 26,
34, 35.

[40] Leonard Wossnig, Zhikuan Zhao, and Anupam Prakash. “Quantum Linear System Al-
gorithm for Dense Matrices”. In: Phys. Rev. Lett. 120 (5 Jan. 2018), p. 050502. doi:
10.1103/PhysRevLett.120.050502 Cited on page 26.

[41] Iordanis Kerenidis and Anupam Prakash. “Quantum Recommendation Systems”. In: 8th
Innovations in Theoretical Computer Science Conference (ITCS 2017). Ed. by Chris-
tos H. Papadimitriou. Vol. 67. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 49:1–49:21.
isbn: 978-3-95977-029-3. doi: 10.4230/LIPIcs.ITCS.2017.49 Cited on page 26.

[42] Yi ğit Suba ş ı, Rolando D. Somma, and Davide Orsucci. “Quantum Algorithms for
Systems of Linear Equations Inspired by Adiabatic Quantum Computing”. In: Phys.
Rev. Lett. 122 (6 Feb. 2019), p. 060504. doi: 10.1103/PhysRevLett.122.060504 Cited
on page 26.

[43] Almudena Carrera Vazquez, Ralf Hiptmair, and Stefan Woerner. “Enhancing the Quan-
tum Linear Systems Algorithm Using Richardson Extrapolation”. In: ACM Transactions
on Quantum Computing 3.1 (Jan. 2022). issn: 2643-6809. doi: 10.1145/3490631 Cited
on page 26.

[44] Wentao Qi et al. Quantum algorithms for matrix operations and linear systems of equa-
tions. 2022. doi: 10.48550/ARXIV.2202.04888 Cited on
page 26.

[45] Dong An and Lin Lin. “Quantum Linear System Solver Based on Time-Optimal Adiabatic
Quantum Computing and Quantum Approximate Optimization Algorithm”. In: ACM
Transactions on Quantum Computing 3.2 (Mar. 2022). issn: 2643-6809. doi: 10.1145/
3498331 Cited on page 26.

[46] Xiaosi Xu et al. “Variational algorithms for linear algebra”. In: Science Bulletin 66.21
(2021), pp. 2181–2188. issn: 2095-9273. doi: https://doi.org/10.1016/j.scib.2021.
06.023 Cited on page 26.

[47] Hsin-Yuan Huang, Kishor Bharti, and Patrick Rebentrost. “Near-term quantum algo-
rithms for linear systems of equations”. In: (Sept. 2019). arXiv: https://arxiv.org/
abs/1909.07344v1. eprint: 1909.07344v1 Cited on page 26.

[48] Carlos Bravo-Prieto et al. Variational Quantum Linear Solver. 2020. arXiv: 1909.05820
[quant-ph] Cited on pages 26, 121, 127.

[49] Arthur Pesah. Quantum Algorithms for Solving Partial Differential Equations. https://
arthurpesah.me/assets/pdf/case-study-quantum-algorithms-pde.pdf. Accessed:
2022-09-15. Mar. 2020 Cited on page 27.

[50] Sarah K. Leyton and Tobias J. Osborne. “A quantum algorithm to solve nonlinear dif-
ferential equations”. In: (2008). doi: 10.48550/ARXIV.0812.4423 Cited on pages 27,
32.

https://doi.org/10.1103/PhysRevLett.110.250504
https://doi.org/10.1103/PhysRevLett.110.250504
1301.2340v4
https://doi.org/10.1038/nphys3272
https://doi.org/10.26421/QIC12.11-12
1202.5822v1
https://doi.org/10.1103/PhysRevLett.120.050502
https://doi.org/10.4230/LIPIcs.ITCS.2017.49
https://doi.org/10.1103/PhysRevLett.122.060504
https://doi.org/10.1145/3490631
https://doi.org/10.48550/ARXIV.2202.04888
https://doi.org/10.1145/3498331
https://doi.org/10.1145/3498331
https://doi.org/https://doi.org/10.1016/j.scib.2021.06.023
https://doi.org/https://doi.org/10.1016/j.scib.2021.06.023
https://arxiv.org/abs/1909.07344v1
https://arxiv.org/abs/1909.07344v1
1909.07344v1
http://arxiv.org/abs/1909.05820
http://arxiv.org/abs/1909.05820
https://arthurpesah.me/assets/pdf/case-study-quantum-algorithms-pde.pdf
https://arthurpesah.me/assets/pdf/case-study-quantum-algorithms-pde.pdf
https://doi.org/10.48550/ARXIV.0812.4423

8.2. Research perspectives 163

[51] Dominic W Berry. “High-order quantum algorithm for solving linear differential equa-
tions”. In: Journal of Physics A: Mathematical and Theoretical 47.10 (Feb. 2014), p. 105301.
doi: 10.1088/1751-8113/47/10/105301 Cited on pages 27, 32.

[52] Dominic W. Berry et al. “Quantum Algorithm for Linear Differential Equations with
Exponentially Improved Dependence on Precision”. In: Communications in Mathematical
Physics 356 (3 Dec. 2017). Communications in Mathematical Physics 356, 1057-1081
(2017), pp. 1057–1081. doi: 10.1007/s00220-017-3002-y. eprint: 1701.03684v2 Cited
on page 28.

[53] Yudong Cao et al. “Quantum algorithm and circuit design solving the Poisson equation”.
In: New Journal of Physics 15.1 (Jan. 2013), p. 013021. doi: 10.1088/1367-2630/15/
1/013021 Cited on pages 28, 32.

[54] Andrew M. Childs, Jin-Peng Liu, and Aaron Ostrander. “High-precision quantum algo-
rithms for partial differential equations”. In: (Feb. 2020). eprint: 2002.07868v1 Cited on
page 28.

[55] Shengbin Wang et al. “Quantum fast Poisson solver: the algorithm and complete and
modular circuit design”. In: Quantum Information Processing 19.6 (Apr. 2020). doi:
10.1007/s11128-020-02669-7 Cited on page 28.

[56] Pedro C. S. Costa, Stephen Jordan, and Aaron Ostrander. “Quantum algorithm for sim-
ulating the wave equation”. In: Physical Review A 99 (1 Jan. 2019). Phys. Rev. A 99,
012323 (2019). doi: 10.1103/PhysRevA.99.012323. eprint: 1711.05394v1 Cited on
pages 28, 33, 37, 38, 52, 54, 58, 59.

[57] I. Y. Dodin and E. A. Startsev. On applications of quantum computing to plasma simu-
lations. 2020. doi: 10.48550/ARXIV.2005.14369 Cited on
page 28.

[58] Alexander Engel, Graeme Smith, and Scott E. Parker. “Quantum algorithm for the Vlasov
equation”. In: Phys. Rev. A 100 (6 Dec. 2019), p. 062315. doi: 10.1103/PhysRevA.100.
062315 Cited on page 28.

[59] Frank Gaitan. “Finding flows of a Navier-Stokes fluid through quantum computing”. In:
npj Quantum Information 6.1 (July 2020). doi: 10.1038/s41534-020-00291-0 Cited on
page 28.

[60] KP Griffin et al. Investigation of quantum algorithms for direct numerical simulation of
the Navier-Stokes equations. 2019 Cited on page 28.

[61] Javier Gonzalez-Conde et al. Simulating option price dynamics with exponential quantum
speedup. 2021. doi: 10.48550/ARXIV.2101.04023 Cited on page 28.

[62] Ashley Montanaro and Sam Pallister. “Quantum algorithms and the finite element method”.
In: (Dec. 2015). Phys. Rev. A 93, 032324 (2016). doi: 10.1103/PhysRevA.93.032324.
eprint: 1512.05903v2 Cited on page 28.

[63] Andrew M. Childs and Jin-Peng Liu. “Quantum spectral methods for differential equa-
tions”. In: (Jan. 2019). eprint: 1901.00961v1 Cited on
page 28.

[64] Paula García-Molina, Javier Rodríguez-Mediavilla, and Juan José García-Ripoll. “Quan-
tum Fourier analysis for multivariate functions and applications to a class of Schrödinger-
type partial differential equations”. In: Phys. Rev. A 105 (1 Jan. 2022), p. 012433. doi:
10.1103/PhysRevA.105.012433 Cited on page 28.

[65] Michael Lubasch et al. “Variational quantum algorithms for nonlinear problems”. In:
Phys. Rev. A 101 (1 Jan. 2020), p. 010301. doi: 10.1103/PhysRevA.101.010301 Cited
on page 28.

https://doi.org/10.1088/1751-8113/47/10/105301
https://doi.org/10.1007/s00220-017-3002-y
1701.03684v2
https://doi.org/10.1088/1367-2630/15/1/013021
https://doi.org/10.1088/1367-2630/15/1/013021
2002.07868v1
https://doi.org/10.1007/s11128-020-02669-7
https://doi.org/10.1103/PhysRevA.99.012323
1711.05394v1
https://doi.org/10.48550/ARXIV.2005.14369
https://doi.org/10.1103/PhysRevA.100.062315
https://doi.org/10.1103/PhysRevA.100.062315
https://doi.org/10.1038/s41534-020-00291-0
https://doi.org/10.48550/ARXIV.2101.04023
https://doi.org/10.1103/PhysRevA.93.032324
1512.05903v2
1901.00961v1
https://doi.org/10.1103/PhysRevA.105.012433
https://doi.org/10.1103/PhysRevA.101.010301

164 Chapter 8. Conclusion

[66] Fernando G. S. L. Brandao and Krysta Svore. Quantum Speed-ups for Semidefinite Pro-
gramming. 2016. doi: 10.48550/ARXIV.1609.05537 Cited on
page 28.

[67] Joran van Apeldoorn et al. “Quantum SDP-Solvers: Better upper and lower bounds”.
In: (May 2017). In 58th IEEE Symposium on Foundations of Computer Science (FOCS
2017), pp.403-414. doi: 10.1109/FOCS.2017.44. eprint: 1705.01843v3 Cited on page 28.

[68] Fernando G. S. L. Brandão et al. Quantum SDP Solvers: Large Speed-ups, Optimality,
and Applications to Quantum Learning. 2017. doi: 10.48550/ARXIV.1710.02581 Cited
on page 28.

[69] Joran van Apeldoorn and András Gilyén. “Improvements in Quantum SDP-Solving with
Applications”. In: 46th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2019). Ed. by Christel Baier et al. Vol. 132. Leibniz International Proceed-
ings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2019, 99:1–99:15. isbn: 978-3-95977-109-2. doi: 10.4230/LIPIcs.ICALP.
2019.99 Cited on page 28.

[70] Joran van Apeldoorn et al. “Quantum SDP-Solvers: Better upper and lower bounds”. In:
Quantum 4 (Feb. 2020), p. 230. issn: 2521-327X. doi: 10.22331/q-2020-02-14-230
Cited on page 28.

[71] Iordanis Kerenidis and Anupam Prakash. “A Quantum Interior Point Method for LPs
and SDPs”. In: ACM Transactions on Quantum Computing 1.1 (Oct. 2020). issn: 2643-
6809. doi: 10.1145/3406306 Cited on
page 28.

[72] Brandon Augustino et al.Quantum Interior Point Methods for Semidefinite Optimization.
2021. doi: 10.48550/ARXIV.2112.06025 Cited on page 28.

[73] Andrew Lucas. “Ising formulations of many NP problems”. In: Frontiers in Physics 2
(2014). issn: 2296-424X. doi: 10.3389/fphy.2014.00005 Cited on page 28.

[74] Sheir Yarkoni et al. Quantum Annealing for Industry Applications: Introduction and Re-
view. 2021. doi: 10.48550/ARXIV.2112.07491 Cited on
page 28.

References for Chapter 3: PDE solver
[13] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum Algorithm for Linear

Systems of Equations”. In: Physical Review Letters 103 (15 Oct. 2009). Phys. Rev. Lett.
vol. 15, no. 103, pp. 150502 (2009). doi: 10.1103/PhysRevLett.103.150502. eprint:
0811.3171v3 Cited on pages 6, 26, 31, 122.

[25] Dominic W. Berry et al. “Efficient Quantum Algorithms for Simulating Sparse Hamiltoni-
ans”. In: Communications in Mathematical Physics 270 (2 Jan. 2007). Communications in
Mathematical Physics 270, 359 (2007), pp. 359–371. doi: 10.1007/s00220-006-0150-x.
eprint: quant-ph/0508139v2 Cited on pages 24, 25, 32–35, 51, 52.

[30] Dominic W. Berry and Andrew M. Childs. “Black-box Hamiltonian Simulation and Uni-
tary Implementation”. In: Quantum Info. Comput. 12.1-2 (Jan. 2012). Quantum Infor-
mation and Computation 12, 29 (2012), pp. 29–62. issn: 1533-7146. doi: 10.26421/
QIC12.1-2. eprint: 0910.4157v4 Cited on pages 25, 32, 34, 35.

https://doi.org/10.48550/ARXIV.1609.05537
https://doi.org/10.1109/FOCS.2017.44
1705.01843v3
https://doi.org/10.48550/ARXIV.1710.02581
https://doi.org/10.4230/LIPIcs.ICALP.2019.99
https://doi.org/10.4230/LIPIcs.ICALP.2019.99
https://doi.org/10.22331/q-2020-02-14-230
https://doi.org/10.1145/3406306
https://doi.org/10.48550/ARXIV.2112.06025
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.48550/ARXIV.2112.07491
https://doi.org/10.1103/PhysRevLett.103.150502
0811.3171v3
https://doi.org/10.1007/s00220-006-0150-x
quant-ph/0508139v2
https://doi.org/10.26421/QIC12.1-2
https://doi.org/10.26421/QIC12.1-2
0910.4157v4

8.2. Research perspectives 165

[31] Dominic W. Berry et al. “Exponential Improvement in Precision for Simulating Sparse
Hamiltonians”. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory
of Computing. STOC ’14. New York, New York: Association for Computing Machinery,
2014, pp. 283–292. isbn: 9781450327107. doi: 10.1145/2591796.2591854 Cited on
pages 25, 34, 35.

[32] Dominic W. Berry et al. “Simulating Hamiltonian Dynamics with a Truncated Taylor
Series”. In: Physical Review Letters 114 (9 Mar. 2015). Phys. Rev. Lett. 114, 090502
(2015). doi: 10.1103/PhysRevLett.114.090502. eprint: 1412.4687v1 Cited on pages 25,
32, 34, 35.

[33] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. “Hamiltonian Simulation with
Nearly Optimal Dependence on all Parameters”. In: 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science. Proceedings of the 56th IEEE Symposium on Foun-
dations of Computer Science (FOCS 2015), pp. 792-809 (2015). Oct. 2015, pp. 792–809.
doi: 10.1109/FOCS.2015.54. eprint: 1501.01715v3 Cited on pages 25, 33–35.

[34] Guang Hao Low and Isaac L. Chuang. “Optimal Hamiltonian Simulation by Quantum
Signal Processing”. In: Physical Review Letters 118 (1 Jan. 2017). Phys. Rev. Lett. 118,
010501 (2017). doi: 10.1103/PhysRevLett.118.010501. eprint: 1606.02685v2 Cited on
pages 25, 32, 34, 35.

[39] Andrew M. Childs and Nathan Wiebe. “Hamiltonian Simulation Using Linear Combina-
tions of Unitary Operations”. In: (Feb. 2012). Quantum Information and Computation
12, 901-924 (2012). doi: 10.26421/QIC12.11-12. eprint: 1202.5822v1 Cited on pages 26,
34, 35.

[50] Sarah K. Leyton and Tobias J. Osborne. “A quantum algorithm to solve nonlinear dif-
ferential equations”. In: (2008). doi: 10.48550/ARXIV.0812.4423 Cited on pages 27,
32.

[51] Dominic W Berry. “High-order quantum algorithm for solving linear differential equa-
tions”. In: Journal of Physics A: Mathematical and Theoretical 47.10 (Feb. 2014), p. 105301.
doi: 10.1088/1751-8113/47/10/105301 Cited on pages 27, 32.

[53] Yudong Cao et al. “Quantum algorithm and circuit design solving the Poisson equation”.
In: New Journal of Physics 15.1 (Jan. 2013), p. 013021. doi: 10.1088/1367-2630/15/
1/013021 Cited on pages 28, 32.

[56] Pedro C. S. Costa, Stephen Jordan, and Aaron Ostrander. “Quantum algorithm for sim-
ulating the wave equation”. In: Physical Review A 99 (1 Jan. 2019). Phys. Rev. A 99,
012323 (2019). doi: 10.1103/PhysRevA.99.012323. eprint: 1711.05394v1 Cited on
pages 28, 33, 37, 38, 52, 54, 58, 59.

[75] Adrien Suau, Gabriel Staffelbach, and Henri Calandra. “Practical Quantum Computing:
Solving the Wave Equation Using a Quantum Approach”. In: ACM Transactions on
Quantum Computing 2.1 (Feb. 2021). issn: 2643-6809. doi: 10.1145/3430030. arXiv:
2003.12458 [quant-ph] Cited on pages 31, 86, 89.

[76] M.J. Werner and P.D. Drummond. “Robust Algorithms for Solving Stochastic Partial
Differential Equations”. In: Journal of Computational Physics 132.2 (1997), pp. 312–326.
issn: 0021-9991. doi: https://doi.org/10.1006/jcph.1996.5638 Cited on page 32.

[77] Artur Scherer et al. “Concrete resource analysis of the quantum linear-system algorithm
used to compute the electromagnetic scattering cross section of a 2D target”. In: Quantum
Information Processing 16 (3 Mar. 2017). Quantum Inf Process (2017) 16: 60. doi: 10.
1007/s11128-016-1495-5. eprint: 1505.06552v2 Cited on pages 32, 34, 122.

https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1103/PhysRevLett.114.090502
1412.4687v1
https://doi.org/10.1109/FOCS.2015.54
1501.01715v3
https://doi.org/10.1103/PhysRevLett.118.010501
1606.02685v2
https://doi.org/10.26421/QIC12.11-12
1202.5822v1
https://doi.org/10.48550/ARXIV.0812.4423
https://doi.org/10.1088/1751-8113/47/10/105301
https://doi.org/10.1088/1367-2630/15/1/013021
https://doi.org/10.1088/1367-2630/15/1/013021
https://doi.org/10.1103/PhysRevA.99.012323
1711.05394v1
https://doi.org/10.1145/3430030
http://arxiv.org/abs/2003.12458
https://doi.org/https://doi.org/10.1006/jcph.1996.5638
https://doi.org/10.1007/s11128-016-1495-5
https://doi.org/10.1007/s11128-016-1495-5
1505.06552v2

166 Chapter 8. Conclusion

[78] Andrew M. Childs et al. “Toward the first quantum simulation with quantum speedup”.
In: Proceedings of the National Academy of Sciences 115 (38 Sept. 2018). Proceedings of
the National Academy of Sciences 115, 9456-9461 (2018), pp. 9456–9461. doi: 10.1073/
pnas.1801723115. eprint: 1711.10980v1 Cited on pages 32–34, 36, 56, 58, 66.

[79] Graeme Robert Ahokas. “Improved Algorithms for Approximate Quantum Fourier Trans-
forms and Sparse Hamiltonian Simulations”. mastersthesis. University of Calgary, 2004.
doi: 10.11575/PRISM/22839 Cited on pages 32–36, 40, 41, 48, 51, 62, 65.

[80] Guang Hao Low. “Hamiltonian simulation with nearly optimal dependence on spectral
norm”. In: (July 2018). eprint: 1807.03967v1 Cited on pages 32, 34, 35.

[81] Andrew M. Childs and Robin Kothari. “Simulating Sparse Hamiltonians with Star De-
compositions”. In: Theory of Quantum Computation, Communication, and Cryptography.
Theory of Quantum Computation, Communication, and Cryptography (TQC 2010), Lec-
ture Notes in Computer Science 6519, pp. 94-103 (2011). Springer Berlin Heidelberg, Mar.
2011, pp. 94–103. doi: 10.1007/978-3-642-18073-6_8. eprint: 1003.3683v2 Cited on
pages 32, 34–36.

[82] Andrew M. Childs, Aaron Ostrander, and Yuan Su. Faster quantum simulation by ran-
domization. misc. Only arXiv eprint available. May 2018. eprint: 1805.08385v1 Cited on
page 32.

[83] Jeongwan Haah et al. “Quantum Algorithm for Simulating Real Time Evolution of Lattice
Hamiltonians”. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS). Oct. 2018, pp. 350–360. doi: 10.1109/FOCS.2018.00041 Cited on
page 32.

[84] Stuart Hadfield and Anargyros Papageorgiou. “Divide and conquer approach to quantum
Hamiltonian simulation”. In: New Journal of Physics 20 (4 Apr. 2018). doi: 10.1088/
1367-2630/aab1ef Cited on page 32.

[85] Maria Kieferova, Artur Scherer, and Dominic Berry. Simulating the dynamics of time-
dependent Hamiltonians with a truncated Dyson series. misc. Only eprint on arXiv. May
2018. eprint: 1805.00582v1 Cited on pages 32, 34, 35.

[86] Guang Hao Low and Isaac L. Chuang. Hamiltonian Simulation by Qubitization. misc.
Only available as eprint, no journal publication. Oct. 2016. eprint: 1610.06546v2 Cited
on pages 32, 34, 35.

[87] Guang Hao Low and Isaac L. Chuang. Hamiltonian Simulation by Uniform Spectral
Amplification. misc. Only available as eprint. No journal publication. July 2017. eprint:
1707.05391v1 Cited on pages 32, 34, 35.

[88] Leonardo Novo and Dominic W. Berry. “Improved Hamiltonian simulation via a trun-
cated Taylor series and corrections”. English. In: Quantum Information and Computation
17.7-8 (Nov. 2016). Quantum Information and Computation 17, 0623 (2017), pp. 623–
635. issn: 1533-7146. eprint: 1611.10033v1 Cited on page 32.

[89] Patrick J. Coles et al. “Quantum Algorithm Implementations for Beginners”. In: (Apr.
2018). eprint: 1804.03719v1 Cited on pages 33, 34.

[90] Hamiltonian simulation implementation in qiskit-aqua. https://github.com/Qiskit/
qiskit-aqua/blob/master/qiskit/aqua/operators/weighted_pauli_operator.py#
L837. Accessed: 2020-03-27. 2019 Cited on page 34.

[91] Quantum algorithms for the simulation of Hamiltonian dynamics. https://github.com/
njross/simcount. Accessed: 2020-03-27. 2019 Cited on page 34.

https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.1073/pnas.1801723115
1711.10980v1
https://doi.org/10.11575/PRISM/22839
1807.03967v1
https://doi.org/10.1007/978-3-642-18073-6_8
1003.3683v2
1805.08385v1
https://doi.org/10.1109/FOCS.2018.00041
https://doi.org/10.1088/1367-2630/aab1ef
https://doi.org/10.1088/1367-2630/aab1ef
1805.00582v1
1610.06546v2
1707.05391v1
1611.10033v1
1804.03719v1
https://github.com/Qiskit/qiskit-aqua/blob/master/qiskit/aqua/operators/weighted_pauli_operator.py#L837
https://github.com/Qiskit/qiskit-aqua/blob/master/qiskit/aqua/operators/weighted_pauli_operator.py#L837
https://github.com/Qiskit/qiskit-aqua/blob/master/qiskit/aqua/operators/weighted_pauli_operator.py#L837
https://github.com/njross/simcount
https://github.com/njross/simcount

8.2. Research perspectives 167

[92] Almudena Carrera Vazquez. “Quantum Algorithm for Solving Tri-Diagonal Linear Sys-
tems of Equations”. mastersthesis. ETH Zürich, Nov. 2018 Cited on
page 35.

[93] Masuo Suzuki. “Fractal decomposition of exponential operators with applications to
many-body theories and Monte Carlo simulations”. In: Physics Letters A 146 (6 June
1990), pp. 319–323. doi: 10.1016/0375-9601(90)90962-N Cited on page 36.

[94] Masuo Suzuki. “Quantum statistical monte carlo methods and applications to spin sys-
tems”. In: Journal of Statistical Physics 43 (5-6 June 1986), pp. 883–909. doi: 10.1007/
BF02628318 Cited on page 36.

[95] Himanshu Thapliyal and Nagarajan Ranganathan. “Design of Efficient Reversible Logic
Based Binary and BCD Adder Circuits”. In: (Dec. 2017). J. Emerg. Technol. Comput.
Syst. 9 (2013) 17:1-17:31. doi: 10.1145/2491682. eprint: 1712.02630v1 Cited on page 44.

[96] Steven A. Cuccaro et al. “A new quantum ripple-carry addition circuit”. In: (Oct. 2004).
eprint: quant-ph/0410184v1 Cited on pages 44, 45.

[97] Thomas G. Draper. “Addition on a Quantum Computer”. In: (Aug. 2000). eprint: quant-
ph/0008033v1 Cited on pages 44, 45.

[98] Adriano Barenco et al. “Approximate Quantum Fourier Transform and Decoherence”.
In: (Jan. 1996). doi: 10.1103/PhysRevA.54.139. eprint: quant-ph/9601018v1 Cited on
pages 44, 45.

[99] Richard Cleve and John Watrous. “Fast parallel circuits for the quantum Fourier trans-
form”. In: (June 2000). eprint: quant-ph/0006004v1 Cited on pages 44,
45.

[100] Thomas Häner, Martin Roetteler, and Krysta M. Svore. “Factoring using 2n+2 qubits
with Toffoli based modular multiplication”. In: (Nov. 2016). Quantum Information and
Computation, Vol. 17, No. 7 & 8 (2017). eprint: 1611.07995v2 Cited on pages 45, 65.

[101] Constructing Large Controlled Nots. https://algassert.com/circuits/2015/06/05/
Constructing-Large-Controlled-Nots.html. Accessed: 2020-03-27. 2015 Cited on
pages 46, 65.

[102] 14-qubit backend: IBM Q team, "IBM Q 16 Melbourne backend specifications V1.3.0"
(2019). Retrieved from https://quantum-computing.ibm.com. 2019 Cited on page 51.

[103] Melbourne hardware operation execution time. https://github.com/Qiskit/ibmq-
device-information/blob/master/backends/melbourne/V1/version_log.md#gate-
specification. Accessed: 2020-03-27. 2019 Cited on pages 51, 57.

[104] Austin G. Fowler et al. “Surface codes: Towards practical large-scale quantum computa-
tion”. In: Phys. Rev. A 86, 032324 (2012) (Aug. 4, 2012). doi: 10.1103/PhysRevA.86.
032324. arXiv: 1208.0928v2 [quant-ph] Cited on pages 54, 58, 66, 122.

[105] Melbourne gate specification. https://github.com/Qiskit/ibmq-device-information/
tree/master/backends/melbourne/V1#gate-specification. Accessed: 2020-03-27.
2019 Cited on page 57.

[106] Neil J Ross and Peter Selinger. “Optimal ancilla-free Clifford+ T approximation of z-
rotations”. In: arXiv preprint arXiv:1403.2975 (2014) Cited on pages 58,
65.

[107] Vlatko Vedral, Adriano Barenco, and Artur Ekert. “Quantum networks for elementary
arithmetic operations”. In: Physical Review A 54.1 (July 1996), pp. 147–153. issn: 1094-
1622. doi: 10.1103/physreva.54.147 Cited on pages 62,
65.

https://doi.org/10.1016/0375-9601(90)90962-N
https://doi.org/10.1007/BF02628318
https://doi.org/10.1007/BF02628318
https://doi.org/10.1145/2491682
1712.02630v1
quant-ph/0410184v1
quant-ph/0008033v1
quant-ph/0008033v1
https://doi.org/10.1103/PhysRevA.54.139
quant-ph/9601018v1
quant-ph/0006004v1
1611.07995v2
https://algassert.com/circuits/2015/06/05/Constructing-Large-Controlled-Nots.html
https://algassert.com/circuits/2015/06/05/Constructing-Large-Controlled-Nots.html
https://quantum-computing.ibm.com
https://github.com/Qiskit/ibmq-device-information/blob/master/backends/melbourne/V1/version_log.md#gate-specification
https://github.com/Qiskit/ibmq-device-information/blob/master/backends/melbourne/V1/version_log.md#gate-specification
https://github.com/Qiskit/ibmq-device-information/blob/master/backends/melbourne/V1/version_log.md#gate-specification
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
http://arxiv.org/abs/1208.0928v2
https://github.com/Qiskit/ibmq-device-information/tree/master/backends/melbourne/V1#gate-specification
https://github.com/Qiskit/ibmq-device-information/tree/master/backends/melbourne/V1#gate-specification
https://doi.org/10.1103/physreva.54.147

168 Chapter 8. Conclusion

[108] Andrew M. Childs et al. “A Theory of Trotter Error”. In: (Dec. 2019). eprint: 1912.
08854v1 Cited on pages 56, 58, 66.

[109] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum 2 (Aug.
2018), p. 79. issn: 2521-327X. doi: 10.22331/q-2018-08-06-79 Cited on pages 58, 141.

[110] Vivek V. Shende and Igor L. Markov. On the CNOT-cost of TOFFOLI gates. 2008. arXiv:
0803.2316 [quant-ph] Cited on page 58.

[111] Taewan Kim and Byung-Soo Choi. “Efficient decomposition methods for controlled-
Rnusing a single ancillary qubit”. In: Scientific Reports 8.1 (Apr. 2018), p. 5445. issn:
2045-2322. doi: 10.1038/s41598-018-23764-x Cited on pages 58, 66.

[112] Ayush Tambde. A Programming Language For Quantum Oracle Construction. 2021. doi:
10.48550/ARXIV.2110.12487 Cited on pages 64, 156.

[113] KP Griffin et al. Investigation of quantum algorithms for direct numerical simulation of
the Navier-Stokes equations. Accessed: 2022-09-10. 2022 Cited on pages 64, 156.

References for Chapter 4: qprof
[29] Andrew M. Childs et al. “Toward the first quantum simulation with quantum speedup”.

In: Proceedings of the National Academy of Sciences 115.38 (Sept. 2018), pp. 9456–9461.
issn: 1091-6490. doi: 10.1073/pnas.1801723115 Cited on pages 25, 70.

[75] Adrien Suau, Gabriel Staffelbach, and Henri Calandra. “Practical Quantum Computing:
Solving the Wave Equation Using a Quantum Approach”. In: ACM Transactions on
Quantum Computing 2.1 (Feb. 2021). issn: 2643-6809. doi: 10.1145/3430030. arXiv:
2003.12458 [quant-ph] Cited on pages 31, 86, 89.

[114] Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial. “Qprof: A Gprof-Inspired Quan-
tum Profiler”. In: ACM Transactions on Quantum Computing (Mar. 2022). Just Ac-
cepted. issn: 2643-6809. doi: 10.1145/3529398 Cited on
page 69.

[115] Philip Ball. First quantum computer to pack 100 qubits enters crowded race. Nature 599,
542 (2021). 2021. url: https://www.nature.com/articles/d41586-021-03476-5
(visited on 01/31/2022) Cited on pages 70, 121.

[116] Héctor Abraham et al. Qiskit: An Open-source Framework for Quantum Computing. 2019.
doi: 10.5281/zenodo.2562110 Cited on page 70.

[117] Microsoft Quantum team. The Q# User Guide. 2021. url: https://docs.microsoft.
com/en-us/azure/quantum/user-guide/ (visited on 05/31/2021) Cited on page 70.

[118] Rigetti Computing. PyQuil documentation. 2021. url: https://pyquil-docs.rigetti.
com/en/stable/ (visited on 05/31/2021) Cited on page 70.

[119] Cirq Developers. Cirq. 2021. doi: 10.5281/ZENODO.4062499 Cited on page 70.

[120] Atos Quantum Computing team. myQLM documentation. 2021. url: https://myqlm.
github.io/ (visited on 05/31/2021) Cited on page 70.

[121] Scott Aaronson and Daniel Gottesman. “Improved simulation of stabilizer circuits”. In:
Phys. Rev. A 70 (5 Nov. 2004), p. 052328. doi: 10.1103/PhysRevA.70.052328 Cited on
page 70.

[122] Craig Gidney. “Stim: a fast stabilizer circuit simulator”. In: Quantum 5 (July 2021),
p. 497. issn: 2521-327X. doi: 10.22331/q-2021-07-06-497 Cited on page 70.

1912.08854v1
1912.08854v1
https://doi.org/10.22331/q-2018-08-06-79
http://arxiv.org/abs/0803.2316
https://doi.org/10.1038/s41598-018-23764-x
https://doi.org/10.48550/ARXIV.2110.12487
https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.1145/3430030
http://arxiv.org/abs/2003.12458
https://doi.org/10.1145/3529398
https://www.nature.com/articles/d41586-021-03476-5
https://doi.org/10.5281/zenodo.2562110
https://docs.microsoft.com/en-us/azure/quantum/user-guide/
https://docs.microsoft.com/en-us/azure/quantum/user-guide/
https://pyquil-docs.rigetti.com/en/stable/
https://pyquil-docs.rigetti.com/en/stable/
https://doi.org/10.5281/ZENODO.4062499
https://myqlm.github.io/
https://myqlm.github.io/
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.22331/q-2021-07-06-497

8.2. Research perspectives 169

[123] Guifré Vidal. “Efficient Classical Simulation of Slightly Entangled Quantum Computa-
tions”. In: Physical Review Letters 91.14 (Oct. 2003). issn: 1079-7114. doi: 10.1103/
physrevlett.91.147902 Cited on page 70.

[124] Ulrich Schollwöck. “The density-matrix renormalization group in the age of matrix prod-
uct states”. In: Annals of Physics 326.1 (Jan. 2011), pp. 96–192. issn: 0003-4916. doi:
10.1016/j.aop.2010.09.012 Cited on page 70.

[125] Joseph Emerson, Robert Alicki, and Karol Życzkowski. “Scalable noise estimation with
random unitary operators”. In: Journal of Optics B: Quantum and Semiclassical Optics
7.10 (Sept. 2005), S347–S352. issn: 1741-3575. doi: 10.1088/1464-4266/7/10/021 Cited
on page 70.

[126] E. Knill et al. “Randomized benchmarking of quantum gates”. In: Physical Review A 77.1
(Jan. 2008). issn: 1094-1622. doi: 10.1103/physreva.77.012307 Cited on page 70.

[127] Jay M. Gambetta et al. “Characterization of Addressability by Simultaneous Randomized
Benchmarking”. In: Phys. Rev. Lett. 109 (24 Dec. 2012), p. 240504. doi: 10.1103/
PhysRevLett.109.240504 Cited on page 70.

[128] Andrew W. Cross et al. “Scalable randomised benchmarking of non-Clifford gates”. In:
npj Quantum Information 2.1 (Apr. 2016), p. 16012. issn: 2056-6387. doi: 10.1038/
npjqi.2016.12 Cited on page 70.

[129] David C. McKay et al. “Three-Qubit Randomized Benchmarking”. In: Phys. Rev. Lett.
122 (20 May 2019), p. 200502. doi: 10.1103/PhysRevLett.122.200502 Cited on page 70.

[130] Ryan LaRose et al. Mitiq: A software package for error mitigation on noisy quantum
computers. 2020. doi: 10.48550/arXiv.2009.04417. arXiv: 2009.04417 [quant-ph]
Cited on page 70.

[131] Sergey Bravyi et al. “Mitigating measurement errors in multiqubit experiments”. In:
Phys. Rev. A 103 (4 Apr. 2021), p. 042605. doi: 10.1103/PhysRevA.103.042605 Cited
on page 70.

[132] Raban Iten et al. “Exact and Practical Pattern Matching for Quantum Circuit Optimiza-
tion”. In: ACM Transactions on Quantum Computing 3.1 (Jan. 2022). issn: 2643-6809.
doi: 10.1145/3498325 Cited on pages 70, 123.

[133] D. Maslov et al. “Quantum Circuit Simplification and Level Compaction”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 27.3 (Mar.
2008), pp. 436–444. issn: 1937-4151. doi: 10.1109/tcad.2007.911334 Cited on pages 70,
123.

[134] Yunseong Nam et al. “Automated optimization of large quantum circuits with continuous
parameters”. In: npj Quantum Information 4.1 (May 2018). doi: 10.1038/s41534-018-
0072-4 Cited on pages 70, 123.

[135] Thomas Fösel et al. Quantum circuit optimization with deep reinforcement learning. 2021.
doi: 10.48550/arXiv.2103.07585. arXiv: 2103.07585 [quant-ph] Cited on pages 70,
123.

[136] J.-H. Bae et al. “Quantum circuit optimization using quantum Karnaugh map”. In: Sci-
entific Reports 10.1 (Sept. 2020), p. 15651. issn: 2045-2322. doi: 10.1038/s41598-020-
72469-7 Cited on pages 70, 123.

[137] Yunong Shi et al. “Optimized Compilation of Aggregated Instructions for Realistic Quan-
tum Computers”. In: Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. ASPLOS ’19.
Providence, RI, USA: Association for Computing Machinery, 2019, pp. 1031–1044. isbn:
9781450362405. doi: 10.1145/3297858.3304018 Cited on pages 70, 123.

https://doi.org/10.1103/physrevlett.91.147902
https://doi.org/10.1103/physrevlett.91.147902
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1103/physreva.77.012307
https://doi.org/10.1103/PhysRevLett.109.240504
https://doi.org/10.1103/PhysRevLett.109.240504
https://doi.org/10.1038/npjqi.2016.12
https://doi.org/10.1038/npjqi.2016.12
https://doi.org/10.1103/PhysRevLett.122.200502
https://doi.org/10.48550/arXiv.2009.04417
http://arxiv.org/abs/2009.04417
https://doi.org/10.1103/PhysRevA.103.042605
https://doi.org/10.1145/3498325
https://doi.org/10.1109/tcad.2007.911334
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.48550/arXiv.2103.07585
http://arxiv.org/abs/2103.07585
https://doi.org/10.1038/s41598-020-72469-7
https://doi.org/10.1038/s41598-020-72469-7
https://doi.org/10.1145/3297858.3304018

170 Chapter 8. Conclusion

[138] Pranav Gokhale et al. “Optimized Quantum Compilation for Near-Term Algorithms with
OpenPulse”. In: 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 2020, pp. 186–200. doi: 10.1109/MICRO50266.2020.00027 Cited on
pages 70, 123.

[139] Nathan Earnest, Caroline Tornow, and Daniel J. Egger. Pulse-efficient circuit transpila-
tion for quantum applications on cross-resonance-based hardware. 2021. doi: 10.1103/
PhysRevResearch.3.043088. arXiv: 2105.01063 [quant-ph] Cited on pages 70, 123.

[140] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. “Gprof: A Call Graph
Execution Profiler”. In: SIGPLAN Not. 17.6 (June 1982), pp. 120–126. issn: 0362-1340.
doi: 10.1145/872726.806987 Cited on pages 70, 71, 95.

[141] Free Software Foundation. GNU gprof. 2020. url: https://sourceware.org/binutils/
docs/gprof/index.html (visited on 05/31/2021) Cited on pages 70, 95.

[142] Unix Programmer’s Manual, 4th Edition. profmanual can be found in the file manx/prof.1.
1973. url: http://www.tuhs.org/Archive/Distributions/Research/Dennis_v4/
v4man.tar.gz Cited on page 71.

[143] OProfile maintainers. OProfile website. 2020. url: https://oprofile.sourceforge.
io/news/ (visited on 01/26/2022) Cited on page 71.

[144] Ali Javadi-Abhari et al. “ScaffCC: A Framework for Compilation and Analysis of Quan-
tum Computing Programs”. In: Proceedings of the 11th ACM Conference on Computing
Frontiers. CF ’14. Cagliari, Italy: Association for Computing Machinery, 2014. isbn:
9781450328708. doi: 10.1145/2597917.2597939 Cited on page 71.

[145] Jonathan M. Smith et al. Quipper: Concrete Resource Estimation in Quantum Algo-
rithms. 2014. doi: 10.48550/arXiv.1412.0625. arXiv: 1412.0625 [cs.PL] Cited on
page 73.

[146] Brendan Gregg. “The Flame Graph”. In: Commun. ACM 59.6 (May 2016), pp. 48–57.
issn: 0001-0782. doi: 10.1145/2909476 Cited on pages 73, 93, 96.

[147] Ketan N. Patel, Igor L. Markov, and John P. Hayes. “Optimal Synthesis of Linear Re-
versible Circuits”. In: Quantum Info. Comput. 8.3 (Mar. 2008), pp. 282–294. issn: 1533-
7146 Cited on
page 93.

[148] Arianne Meijer-van de Griend and Ross Duncan. Architecture-aware synthesis of phase
polynomials for NISQ devices. 2020. doi: 10.48550/arXiv.2004.06052. arXiv: 2004.
06052 [quant-ph] Cited on page 93.

[149] Timothée Goubault de Brugière et al. “Quantum CNOT Circuits Synthesis for NISQ
Architectures Using the Syndrome Decoding Problem”. In: Reversible Computation: 12th
International Conference, RC 2020, Oslo, Norway, July 9-10, 2020, Proceedings. Oslo,
Norway: Springer-Verlag, 2020, pp. 189–205. isbn: 978-3-030-52481-4. doi: 10.1007/978-
3-030-52482-1_11 Cited on page 93.

[150] Alexander Mccaskey et al. “Extending C++ for Heterogeneous Quantum-Classical Com-
puting”. In: ACM Transactions on Quantum Computing 2.2 (July 2021). issn: 2643-6809.
doi: 10.1145/3462670 Cited on page 95.

[151] The Linux Foundation. perf_event tutorial. 2020. url: https://perf.wiki.kernel.org
(visited on 05/31/2021) Cited on page 96.

https://doi.org/10.1109/MICRO50266.2020.00027
https://doi.org/10.1103/PhysRevResearch.3.043088
https://doi.org/10.1103/PhysRevResearch.3.043088
http://arxiv.org/abs/2105.01063
https://doi.org/10.1145/872726.806987
https://sourceware.org/binutils/docs/gprof/index.html
https://sourceware.org/binutils/docs/gprof/index.html
http://www.tuhs.org/Archive/Distributions/Research/Dennis_v4/v4man.tar.gz
http://www.tuhs.org/Archive/Distributions/Research/Dennis_v4/v4man.tar.gz
https://oprofile.sourceforge.io/news/
https://oprofile.sourceforge.io/news/
https://doi.org/10.1145/2597917.2597939
https://doi.org/10.48550/arXiv.1412.0625
http://arxiv.org/abs/1412.0625
https://doi.org/10.1145/2909476
https://doi.org/10.48550/arXiv.2004.06052
http://arxiv.org/abs/2004.06052
http://arxiv.org/abs/2004.06052
https://doi.org/10.1007/978-3-030-52482-1_11
https://doi.org/10.1007/978-3-030-52482-1_11
https://doi.org/10.1145/3462670
https://perf.wiki.kernel.org

8.2. Research perspectives 171

References for Chapter 5: Hardware aware compiler
[152] Donatello Conte et al. “Thirty Years Of Graph Matching In Pattern Recognition”.

In: International Journal of Pattern Recognition and Artificial Intelligence 18.3 (2004),
pp. 265–298. doi: 10.1142/S0218001404003228 Cited on page 101.

[153] Vincenzo Carletti et al. “Introducing VF3: A New Algorithm for Subgraph Isomorphism”.
In: Graph-Based Representations in Pattern Recognition. Ed. by Pasquale Foggia, Cheng-
Lin Liu, and Mario Vento. Cham: Springer International Publishing, 2017, pp. 128–139.
isbn: 978-3-319-58961-9 Cited on page 101.

[154] Debjyoti Bhattacharjee and Anupam Chattopadhyay. Depth-Optimal Quantum Circuit
Placement for Arbitrary Topologies. arXiv : https://arxiv.org/abs/1703.08540. 2017.
arXiv: 1703.08540 [cs.ET] Cited on page 102.

[155] Debjyoti Bhattacharjee et al. “MUQUT: Multi-constraint quantum circuit mapping on
NISQ computers”. In: 38th IEEE/ACM International Conference on Computer-Aided
Design, ICCAD 2019. doi: https://doi.org/10.1109/ICCAD45719.2019.8942132.
Institute of Electrical and Electronics Engineers Inc. 2019, p. 8942132 Cited on page 102.

[156] Lingling Lao et al. “Mapping of quantum circuits onto NISQ superconducting processors”.
In: arXiv e-prints, arXiv:1908.04226v1 (Aug. 2019). arXiv : https://arxiv.org/abs/
1908.04226v1. arXiv: 1908.04226v1 [quant-ph] Cited on page 102.

[157] Alexandre A. A. de Almeida, Gerhard W. Dueck, and Alexandre C. R. da Silva. “Finding
Optimal Qubit Permutations for IBM’s Quantum Computer Architectures”. In: Proceed-
ings of the 32nd Symposium on Integrated Circuits and Systems Design. SBCCI ’19. doi:
https://doi.org/10.1145/3338852.3339829. São Paulo, Brazil: Association for Com-
puting Machinery, 2019. isbn: 9781450368445 Cited on
page 102.

[158] Prakash Murali et al. “Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale
Quantum Computers”. In: Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. ASPLOS ’19.
doi: https://doi.org/10.1145/3297858.3304075. Providence, RI, USA: Association
for Computing Machinery, 2019, pp. 1015–1029. isbn: 9781450362405 Cited on pages 102,
114.

[159] Prakash Murali et al. Full-Stack, Real-System Quantum Computer Studies: Architectural
Comparisons and Design Insights. doi: https://doi.org/10.1145/3307650.3322273.
2019. arXiv: 1905.11349 [quant-ph] Cited on page 102.

[160] Kyle E. C. Booth et al. “Comparing and Integrating Constraint Programming and Tem-
poral Planning for Quantum Circuit Compilation”. In: International Conference on Au-
tomated Planning and Scheduling. arXiv: https://arxiv.org/abs/1803.06775. 2018,
pp. 366–374. arXiv: 1803.06775 [quant-ph] Cited on page 102.

[161] Davide Venturelli et al. “Quantum Circuit Compilation : An Emerging Application for
Automated Reasoning”. In: (2019) Cited on page 102.

[162] Mehdi Saeedi, Robert Wille, and Rolf Drechsler. “Synthesis of quantum circuits for linear
nearest neighbor architectures”. In: Quantum Information Processing 10.3 (2011). doi:
https://doi.org/10.1007/s11128-010-0201-2, pp. 355–377 Cited on page 102.

[163] Mohammad Alfailakawi, Imtiaz Ahmad, and Suha Hamdan. “LNN Reversible Circuit
Realization Using Fast Harmony Search Based Heuristic”. In: Asia-Pacific Conference
on Computer Science and Electrical Engineering. Nov. 2014 Cited on page 102.

https://doi.org/10.1142/S0218001404003228
https://arxiv.org/abs/1703.08540
http://arxiv.org/abs/1703.08540
https://doi.org/10.1109/ICCAD45719.2019.8942132
https://arxiv.org/abs/1908.04226v1
https://arxiv.org/abs/1908.04226v1
http://arxiv.org/abs/1908.04226v1
https://doi.org/10.1145/3338852.3339829
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/3307650.3322273
http://arxiv.org/abs/1905.11349
https://arxiv.org/abs/1803.06775
http://arxiv.org/abs/1803.06775
https://doi.org/10.1007/s11128-010-0201-2

172 Chapter 8. Conclusion

[164] Robert Wille et al. “Look-ahead schemes for nearest neighbor optimization of 1D and 2D
quantum circuits”. In: 2016 21st Asia and South Pacific Design Automation Conference
(ASP-DAC). doi: https://doi.org/10.1109/ASPDAC.2016.7428026. IEEE. 2016,
pp. 292–297 Cited on page 102.

[165] Ritu Ranjan Shrivastwa, Kamalika Datta, and Indranil Sengupta. “Fast qubit placement
in 2D architecture using nearest neighbor realization”. In: 2015 ieee international sym-
posium on nanoelectronic and information systems. doi: https://doi.org/10.1109/
iNIS.2015.59. IEEE. 2015, pp. 95–100 Cited on page 102.

[166] Abhoy Kole, Kamalika Datta, and Indranil Sengupta. “A Heuristic for Linear Near-
est Neighbor Realization of Quantum Circuits by SWAP Gate Insertion Using N -Gate
Lookahead”. In: IEEE Journal on Emerging and Selected Topics in Circuits and Systems
6.1 (2016). doi: https://doi.org/10.1109/JETCAS.2016.2528720, pp. 62–72 Cited on
page 102.

[167] Alwin Zulehner, Alexandru Paler, and Robert Wille. “An efficient methodology for map-
ping quantum circuits to the IBMQX architectures”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 38.7 (2018). doi: https://doi.org/10.
1109/TCAD.2018.2846658, pp. 1226–1236 Cited on pages 102, 114.

[168] Marcos Yukio Siraichi et al. “Qubit Allocation”. In: Proceedings of the 2018 Interna-
tional Symposium on Code Generation and Optimization. CGO 2018. doi: https://doi.
org/10.1145/3168822. Vienna, Austria: Association for Computing Machinery, 2018,
pp. 113–125. isbn: 9781450356176 Cited on page 102.

[169] Gushu Li, Yufei Ding, and Yuan Xie. “Tackling the qubit mapping problem for NISQ-
era quantum devices”. In: Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. doi: https:
//doi.org/10.1145/3297858.3304023. 2019, pp. 1001–1014 Cited on pages 102, 104,
106, 109, 114.

[170] Xiangzhen Zhou, Sanjiang Li, and Yuan Feng. “Quantum Circuit Transformation Based
on Simulated Annealing and Heuristic Search”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (2020). doi: https://doi.org/10.
1109/TCAD.2020.2969647 Cited on pages 102, 111.

[171] Toshinari Itoko et al. “Optimization of quantum circuit mapping using gate transforma-
tion and commutation”. In: Integration 70 (2020). doi: https://doi.org/10.1016/j.
vlsi.2019.10.004, pp. 43–50 Cited on pages 102, 109.

[172] Alexander Cowtan et al. “On the Qubit Routing Problem”. In: 14th Conference on the
Theory of Quantum Computation, Communication and Cryptography (TQC 2019). Ed.
by Wim van Dam and Laura Mancinska. Vol. 135. Leibniz International Proceedings in
Informatics (LIPIcs). doi: https://doi.org/10.4230/LIPIcs.TQC.2019.5. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 5:1–5:32. isbn: 978-
3-95977-112-2. doi: 10.4230/LIPIcs.TQC.2019.5 Cited on
page 102.

[173] Gian Giacomo Guerreschi. “Scheduler of quantum circuits based on dynamical pattern
improvement and its application to hardware design”. In: arXiv e-prints, arXiv:1912.00035
(Nov. 2019). arXiv: https://arxiv.org/abs/1912.00035, arXiv:1912.00035. arXiv:
1912.00035 [quant-ph] Cited on page 102.

[174] P. Zhu, Z. Guan, and X. Cheng. “A Dynamic Look-ahead Heuristic for the Qubit Mapping
Problem of NISQ Computers”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (2020). doi: https://doi.org/10.1109/TCAD.2020.
2970594. issn: 1937-4151. doi: 10.1109/TCAD.2020.2970594 Cited on pages 102, 114.

https://doi.org/10.1109/ASPDAC.2016.7428026
https://doi.org/10.1109/iNIS.2015.59
https://doi.org/10.1109/iNIS.2015.59
https://doi.org/10.1109/JETCAS.2016.2528720
https://doi.org/10.1109/TCAD.2018.2846658
https://doi.org/10.1109/TCAD.2018.2846658
https://doi.org/10.1145/3168822
https://doi.org/10.1145/3168822
https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1109/TCAD.2020.2969647
https://doi.org/10.1109/TCAD.2020.2969647
https://doi.org/10.1016/j.vlsi.2019.10.004
https://doi.org/10.1016/j.vlsi.2019.10.004
https://doi.org/10.4230/LIPIcs.TQC.2019.5
https://doi.org/10.4230/LIPIcs.TQC.2019.5
https://arxiv.org/abs/1912.00035
http://arxiv.org/abs/1912.00035
https://doi.org/10.1109/TCAD.2020.2970594
https://doi.org/10.1109/TCAD.2020.2970594
https://doi.org/10.1109/TCAD.2020.2970594

8.2. Research perspectives 173

[175] Gian Giacomo Guerreschi and Jongsoo Park. “Two-step approach to scheduling quantum
circuits”. In: Quantum Science and Technology 3.4 (July 2018). doi: https://doi.org/
10.1088/2058-9565/aacf0b, p. 045003. doi: 10.1088/2058-9565/aacf0b Cited on
page 102.

[176] Swamit S Tannu and Moinuddin K Qureshi. “Not all qubits are created equal: a case
for variability-aware policies for NISQ-era quantum computers”. In: Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. doi: https://doi.org/10.1145/3297858.3304007.
2019, pp. 987–999 Cited on pages 102, 104.

[177] Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh. “Qure: Qubit re-allocation in
noisy intermediate-scale quantum computers”. In: Proceedings of the 56th Annual Design
Automation Conference 2019. doi: https://doi.org/10.1145/3316781.3317888. 2019,
pp. 1–6 Cited on page 102.

[178] Will Finigan et al. “Qubit allocation for noisy intermediate-scale quantum computers”. In:
arXiv preprint arXiv:1810.08291 (2018). arXiv: https://arxiv.org/abs/1810.08291
Cited on page 102.

[179] IBMQ backends information. https://github.com/Qiskit/ibmq-device-information.
Accessed: 2020-03-27. 2019 Cited on pages 103, 113.

[180] AndrewWCross et al. “Open quantum assembly language”. In: arXiv preprint arXiv:1707.03429
(2017). arXiv: https://arxiv.org/abs/1707.03429 Cited on pages 104, 114.

[181] Robert W Floyd. “Algorithm 97: shortest path”. In: Communications of the ACM 5.6
(1962). doi: https://doi.org/10.1145/367766.368168, p. 345 Cited on page 108.

[182] Ang Li and Sriram Krishnamoorthy. “QASMBench: A Low-level QASM Benchmark Suite
for NISQ Evaluation and Simulation”. In: arXiv preprint arXiv:2005.13018 (2020). arXiv:
https://arxiv.org/abs/2005.13018 Cited on page 114.

[183] R. Wille et al. “RevLib: An Online Resource for Reversible Functions and Reversible
Circuits”. In: Int’l Symp. on -Valued Logic. RevLib is available at http://www.revlib.
org. 2008, pp. 220–225 Cited on page 114.

References for Chapter 6: Variational quantum linear solver
[13] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum Algorithm for Linear

Systems of Equations”. In: Physical Review Letters 103 (15 Oct. 2009). Phys. Rev. Lett.
vol. 15, no. 103, pp. 150502 (2009). doi: 10.1103/PhysRevLett.103.150502. eprint:
0811.3171v3 Cited on pages 6, 26, 31, 122.

[38] Scott Aaronson. “Read the fine print”. In: Nature Physics 11.4 (Apr. 2015), pp. 291–293.
doi: 10.1038/nphys3272 Cited on pages 26, 122.

[48] Carlos Bravo-Prieto et al. Variational Quantum Linear Solver. 2020. arXiv: 1909.05820
[quant-ph] Cited on pages 26, 121, 127.

[77] Artur Scherer et al. “Concrete resource analysis of the quantum linear-system algorithm
used to compute the electromagnetic scattering cross section of a 2D target”. In: Quantum
Information Processing 16 (3 Mar. 2017). Quantum Inf Process (2017) 16: 60. doi: 10.
1007/s11128-016-1495-5. eprint: 1505.06552v2 Cited on pages 32, 34, 122.

[104] Austin G. Fowler et al. “Surface codes: Towards practical large-scale quantum computa-
tion”. In: Phys. Rev. A 86, 032324 (2012) (Aug. 4, 2012). doi: 10.1103/PhysRevA.86.
032324. arXiv: 1208.0928v2 [quant-ph] Cited on pages 54, 58, 66, 122.

https://doi.org/10.1088/2058-9565/aacf0b
https://doi.org/10.1088/2058-9565/aacf0b
https://doi.org/10.1088/2058-9565/aacf0b
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1145/3316781.3317888
https://arxiv.org/abs/1810.08291
https://github.com/Qiskit/ibmq-device-information
https://arxiv.org/abs/1707.03429
https://doi.org/10.1145/367766.368168
https://arxiv.org/abs/2005.13018
http://www.revlib.org
http://www.revlib.org
https://doi.org/10.1103/PhysRevLett.103.150502
0811.3171v3
https://doi.org/10.1038/nphys3272
http://arxiv.org/abs/1909.05820
http://arxiv.org/abs/1909.05820
https://doi.org/10.1007/s11128-016-1495-5
https://doi.org/10.1007/s11128-016-1495-5
1505.06552v2
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
http://arxiv.org/abs/1208.0928v2

174 Chapter 8. Conclusion

[115] Philip Ball. First quantum computer to pack 100 qubits enters crowded race. Nature 599,
542 (2021). 2021. url: https://www.nature.com/articles/d41586-021-03476-5
(visited on 01/31/2022) Cited on pages 70, 121.

[132] Raban Iten et al. “Exact and Practical Pattern Matching for Quantum Circuit Optimiza-
tion”. In: ACM Transactions on Quantum Computing 3.1 (Jan. 2022). issn: 2643-6809.
doi: 10.1145/3498325 Cited on pages 70, 123.

[133] D. Maslov et al. “Quantum Circuit Simplification and Level Compaction”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 27.3 (Mar.
2008), pp. 436–444. issn: 1937-4151. doi: 10.1109/tcad.2007.911334 Cited on pages 70,
123.

[134] Yunseong Nam et al. “Automated optimization of large quantum circuits with continuous
parameters”. In: npj Quantum Information 4.1 (May 2018). doi: 10.1038/s41534-018-
0072-4 Cited on pages 70, 123.

[135] Thomas Fösel et al. Quantum circuit optimization with deep reinforcement learning. 2021.
doi: 10.48550/arXiv.2103.07585. arXiv: 2103.07585 [quant-ph] Cited on pages 70,
123.

[136] J.-H. Bae et al. “Quantum circuit optimization using quantum Karnaugh map”. In: Sci-
entific Reports 10.1 (Sept. 2020), p. 15651. issn: 2045-2322. doi: 10.1038/s41598-020-
72469-7 Cited on pages 70, 123.

[137] Yunong Shi et al. “Optimized Compilation of Aggregated Instructions for Realistic Quan-
tum Computers”. In: Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. ASPLOS ’19.
Providence, RI, USA: Association for Computing Machinery, 2019, pp. 1031–1044. isbn:
9781450362405. doi: 10.1145/3297858.3304018 Cited on pages 70, 123.

[138] Pranav Gokhale et al. “Optimized Quantum Compilation for Near-Term Algorithms with
OpenPulse”. In: 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 2020, pp. 186–200. doi: 10.1109/MICRO50266.2020.00027 Cited on
pages 70, 123.

[139] Nathan Earnest, Caroline Tornow, and Daniel J. Egger. Pulse-efficient circuit transpila-
tion for quantum applications on cross-resonance-based hardware. 2021. doi: 10.1103/
PhysRevResearch.3.043088. arXiv: 2105.01063 [quant-ph] Cited on pages 70, 123.

[184] Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. “Roads towards fault-
tolerant universal quantum computation”. In: Nature 549.7671 (Sept. 2017), pp. 172–
179. issn: 1476-4687. doi: 10.1038/nature23460 Cited on page 122.

[185] Bibek Pokharel et al. “Demonstration of Fidelity Improvement Using Dynamical Decou-
pling with Superconducting Qubits”. In: Phys. Rev. Lett. 121 (22 Nov. 2018), p. 220502.
doi: 10.1103/PhysRevLett.121.220502 Cited on page 123.

[186] Alexandre M Souza, Gonzalo A Álvarez, and Dieter Suter. “Robust dynamical decou-
pling”. In: Philos. Trans. A Math. Phys. Eng. Sci. 370.1976 (Oct. 2012), pp. 4748–4769
Cited on page 123.

[187] Jacob R. West et al. “High Fidelity Quantum Gates via Dynamical Decoupling”. In:
Phys. Rev. Lett. 105 (23 Dec. 2010), p. 230503. doi: 10.1103/PhysRevLett.105.230503
Cited on page 123.

[188] Lu-Ming Duan and Guang-Can Guo. “Suppressing environmental noise in quantum com-
putation through pulse control”. In: Physics Letters A 261.3 (1999), pp. 139–144. issn:
0375-9601. doi: https://doi.org/10.1016/S0375-9601(99)00592-7 Cited on page 123.

https://www.nature.com/articles/d41586-021-03476-5
https://doi.org/10.1145/3498325
https://doi.org/10.1109/tcad.2007.911334
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.48550/arXiv.2103.07585
http://arxiv.org/abs/2103.07585
https://doi.org/10.1038/s41598-020-72469-7
https://doi.org/10.1038/s41598-020-72469-7
https://doi.org/10.1145/3297858.3304018
https://doi.org/10.1109/MICRO50266.2020.00027
https://doi.org/10.1103/PhysRevResearch.3.043088
https://doi.org/10.1103/PhysRevResearch.3.043088
http://arxiv.org/abs/2105.01063
https://doi.org/10.1038/nature23460
https://doi.org/10.1103/PhysRevLett.121.220502
https://doi.org/10.1103/PhysRevLett.105.230503
https://doi.org/https://doi.org/10.1016/S0375-9601(99)00592-7

8.2. Research perspectives 175

[189] Lorenza Viola, Emanuel Knill, and Seth Lloyd. “Dynamical Decoupling of Open Quan-
tum Systems”. In: Phys. Rev. Lett. 82 (12 Mar. 1999), pp. 2417–2421. doi: 10.1103/
PhysRevLett.82.2417 Cited on page 123.

[190] Lorenza Viola and Seth Lloyd. “Dynamical suppression of decoherence in two-state quan-
tum systems”. In: Phys. Rev. A 58 (4 Oct. 1998), pp. 2733–2744. doi: 10.1103/PhysRevA.
58.2733 Cited on page 123.

[191] Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. “Error Mitigation for Short-
Depth Quantum Circuits”. In: Phys. Rev. Lett. 119 (18 Nov. 2017), p. 180509. doi:
10.1103/PhysRevLett.119.180509 Cited on page 123.

[192] Suguru Endo, Simon C. Benjamin, and Ying Li. “Practical Quantum Error Mitigation
for Near-Future Applications”. In: Phys. Rev. X 8 (3 July 2018), p. 031027. doi: 10.
1103/PhysRevX.8.031027 Cited on page 123.

[193] Shuaining Zhang et al. “Error-mitigated quantum gates exceeding physical fidelities in
a trapped-ion system”. In: Nature Communications 11.1 (Jan. 2020), p. 587. issn: 2041-
1723. doi: 10.1038/s41467-020-14376-z Cited on
page 123.

[194] Piotr Czarnik et al. “Error mitigation with Clifford quantum-circuit data”. In: Quantum
5 (Nov. 2021), p. 592. issn: 2521-327X. doi: 10.22331/q-2021-11-26-592 Cited on
page 123.

[195] Angus Lowe et al. “Unified approach to data-driven quantum error mitigation”. In: Phys.
Rev. Research 3 (3 July 2021), p. 033098. doi: 10.1103/PhysRevResearch.3.033098
Cited on page 123.

[196] Paul D. Nation et al. “Scalable Mitigation of Measurement Errors on Quantum Comput-
ers”. In: PRX Quantum 2 (4 Nov. 2021), p. 040326. doi: 10.1103/PRXQuantum.2.040326
Cited on page 123.

[197] Ying Li and Simon C. Benjamin. “Efficient Variational Quantum Simulator Incorporating
Active Error Minimization”. In: Physical Review X 7 (2 June 2017). doi: 10.1103/
PhysRevX.7.021050 Cited on page 123.

[198] Abhinav Kandala et al. “Error mitigation extends the computational reach of a noisy
quantum processor”. In: Nature 567.7749 (Mar. 2019), pp. 491–495. issn: 1476-4687.
doi: 10.1038/s41586-019-1040-7 Cited on page 123.

[199] Alberto Peruzzo et al. “A variational eigenvalue solver on a photonic quantum processor”.
In: Nature Communications 5.1 (July 2014). doi: 10.1038/ncomms5213 Cited on
pages 123, 124.

[200] Sukin Sim, Peter D. Johnson, and Alán Aspuru-Guzik. “Expressibility and Entangling
Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms”.
In: Advanced Quantum Technologies 2.12 (2019), p. 1900070. doi: https://doi.org/
10.1002/qute.201900070. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/qute.201900070 Cited on page 125.

[201] M. Cerezo et al. “Cost function dependent barren plateaus in shallow parametrized quan-
tum circuits”. In: Nature Communications 12.1 (Mar. 2021), p. 1791. issn: 2041-1723.
doi: 10.1038/s41467-021-21728-w Cited on pages 126, 127.

[202] Andrew Arrasmith et al. “Effect of barren plateaus on gradient-free optimization”. In:
Quantum 5 (Oct. 2021), p. 558. issn: 2521-327X. doi: 10.22331/q-2021-10-05-558
Cited on page 126.

https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1038/s41467-020-14376-z
https://doi.org/10.22331/q-2021-11-26-592
https://doi.org/10.1103/PhysRevResearch.3.033098
https://doi.org/10.1103/PRXQuantum.2.040326
https://doi.org/10.1103/PhysRevX.7.021050
https://doi.org/10.1103/PhysRevX.7.021050
https://doi.org/10.1038/s41586-019-1040-7
https://doi.org/10.1038/ncomms5213
https://doi.org/https://doi.org/10.1002/qute.201900070
https://doi.org/https://doi.org/10.1002/qute.201900070
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.201900070
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.201900070
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.22331/q-2021-10-05-558

176 Chapter 8. Conclusion

[203] Constructing Large Increment Gates. https://algassert.com/circuits/2015/06/12/
Constructing-Large-Increment-Gates.html. Accessed: 2022-09-10. 2015 Cited on
page 131.

[204] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Informa-
tion. Cambridge University Press, 2000 Cited on
page 131.

[205] University of Texas Austin Ward Cheney and David Kincaid. Numerical mathematics
and computing. 6th ed. Belmont, CA: Wadsworth Publishing, Aug. 2007 Cited on
page 132.

References for Chapter 7: Single qubit tomography visualisation
[109] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum 2 (Aug.

2018), p. 79. issn: 2521-327X. doi: 10.22331/q-2018-08-06-79 Cited on pages 58, 141.

[206] Jens Eisert et al. “Quantum certification and benchmarking”. In: Nature Reviews Physics
2.7 (July 2020), pp. 382–390. issn: 2522-5820. doi: 10.1038/s42254-020-0186-4 Cited
on page 141.

[207] K. Wright et al. “Benchmarking an 11-qubit quantum computer”. In: Nature Communi-
cations 10.1 (Nov. 2019), p. 5464. issn: 2041-1723. doi: 10.1038/s41467-019-13534-2
Cited on page 141.

[208] Z. Hradil. “Quantum-state estimation”. In: Phys. Rev. A 55 (3 Mar. 1997), R1561–R1564.
doi: 10.1103/PhysRevA.55.R1561 Cited on pages 141, 142.

[209] Easwar Magesan, J. M. Gambetta, and Joseph Emerson. “Scalable and Robust Ran-
domized Benchmarking of Quantum Processes”. In: Phys. Rev. Lett. 106 (18 May 2011),
p. 180504. doi: 10.1103/PhysRevLett.106.180504 Cited on pages 141, 142.

[210] E. Knill et al. “Randomized benchmarking of quantum gates”. In: Phys. Rev. A 77 (1
Jan. 2008), p. 012307. doi: 10.1103/PhysRevA.77.012307 Cited on pages 141, 142.

[211] Erik Nielsen et al. Gate Set Tomography. 2020. eprint: arXiv:2009.07301 Cited on
pages 141, 142.

[212] Andrew W. Cross et al. “Validating quantum computers using randomized model cir-
cuits”. In: Phys. Rev. A 100 (3 Sept. 2019), p. 032328. doi: 10.1103/PhysRevA.100.
032328 Cited on page 141.

[213] Sergio Boixo et al. “Characterizing quantum supremacy in near-term devices”. In: Nature
Physics 14.6 (June 2018), pp. 595–600. issn: 1745-2481. doi: 10.1038/s41567-018-
0124-x Cited on page 141.

[214] Jay Gambetta and Sarah Sheldon. Cramming More Power Into a Quantum Device. Pub-
lished online at https://www.ibm.com/blogs/research/2019/03/power-quantum-
device/. Accessed: 03/28/2021. 2019 Cited on page 142.

[215] Frank Arute et al. “Quantum supremacy using a programmable superconducting pro-
cessor”. In: Nature 574.7779 (Oct. 2019), pp. 505–510. issn: 1476-4687. doi: 10.1038/
s41586-019-1666-5 Cited on page 142.

[216] Yulin Wu et al. “Strong Quantum Computational Advantage Using a Superconducting
Quantum Processor”. In: Phys. Rev. Lett. 127 (18 Oct. 2021), p. 180501. doi: 10.1103/
PhysRevLett.127.180501 Cited on page 142.

[217] Bo Qi et al. “Quantum state tomography via linear regression estimation”. In: Scientific
reports 3.1 (2013), pp. 1–6 Cited on pages 143, 150.

https://algassert.com/circuits/2015/06/12/Constructing-Large-Increment-Gates.html
https://algassert.com/circuits/2015/06/12/Constructing-Large-Increment-Gates.html
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1103/PhysRevA.55.R1561
https://doi.org/10.1103/PhysRevLett.106.180504
https://doi.org/10.1103/PhysRevA.77.012307
arXiv:2009.07301
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41567-018-0124-x
https://www.ibm.com/blogs/research/2019/03/power-quantum-device/
https://www.ibm.com/blogs/research/2019/03/power-quantum-device/
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1103/PhysRevLett.127.180501

8.2. Research perspectives 177

[218] David Gross et al. “Quantum State Tomography via Compressed Sensing”. In: Phys. Rev.
Lett. 105 (15 Oct. 2010), p. 150401. doi: 10.1103/PhysRevLett.105.150401 Cited on
page 143.

[219] Z. Hradil. “Quantum-state estimation”. In: Phys. Rev. A 55 (3 Mar. 1997), R1561–R1564.
doi: 10.1103/PhysRevA.55.R1561 Cited on page 143.

[220] Huo Chen and Daniel A. Lidar. HOQST: Hamiltonian Open Quantum System Toolkit.
2020. eprint: arXiv:2011.14046 Cited on page 148.

[221] J.R. Johansson, P.D. Nation, and Franco Nori. “QuTiP: An open-source Python frame-
work for the dynamics of open quantum systems”. In: Computer Physics Communications
183.8 (2012), pp. 1760–1772. issn: 0010-4655. doi: https://doi.org/10.1016/j.cpc.
2012.02.021 Cited on page 148.

References for Chapter 8: Conclusion
[112] Ayush Tambde. A Programming Language For Quantum Oracle Construction. 2021. doi:

10.48550/ARXIV.2110.12487 Cited on pages 64, 156.

[113] KP Griffin et al. Investigation of quantum algorithms for direct numerical simulation of
the Navier-Stokes equations. Accessed: 2022-09-10. 2022 Cited on pages 64, 156.

https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.1103/PhysRevA.55.R1561
arXiv:2011.14046
https://doi.org/https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.48550/ARXIV.2110.12487

178 Chapter 8. Conclusion

	Remerciements
	Abstract
	Résumé
	Contents
	Contributions
	I Foreword
	Introduction to Quantum Computing
	History of quantum computing
	Models of quantum computation
	Adiabatic quantum computing
	Measurement-based quantum computing
	Gate-based quantum computing

	Quantum computing theoretical framework
	Closed quantum system
	Quantum operations
	Composite quantum systems
	Quantum measurement
	Non-closed quantum systems

	Visual representations in quantum computing
	Visualisation of quantum states
	Representation of quantum computation

	Scientific computing and quantum computing
	Scientific computing
	Examples of applications scientific computing
	Mathematical problems encountered in scientific computing
	How are these problems solved on classical computers?

	Usage of quantum computing
	Hamiltonian simulation
	Systems of linear equations
	Partial differential equation solvers
	Quantum algorithms for optimisation

	II Algorithm implementation
	PDE solver
	Problem considered
	Type of problems
	Choice of the PDE

	Implementation
	Sparse Hamiltonian simulation algorithm
	Product-formula implementation details
	Quantum wave equation solver
	Hermitian matrix construction and decomposition
	Oracle construction

	Results
	Hamiltonian simulation
	Wave equation solver
	Gate count analysis

	Additional work
	Implementation of higher-order Laplacians
	Optimisation of the implementation

	Discussion
	Supplementary material

	III Algorithm analysis
	qprof
	Introduction
	Related work
	Classical profilers
	Quantum profilers

	How does qprof works?
	General structure
	The qcw package
	Core data structures and logic
	Exporters

	Complexity and runtime analysis
	Asymptotic complexity of qprof
	Real-world execution time

	Code examples and practical applications
	Benchmarking a simple program
	Grover's algorithm
	Quantum wave equation solver

	Discussion
	Comparison with the state-of-the-art
	qprof and quantum circuit compilation
	qprof and hardware-aware timings
	Limitations of the gprof exporter
	qprof and NISQ circuits
	qprof and dynamical circuits

	Conclusion

	IV Targetting NISQ
	Hardware aware compiler
	Introduction
	Motivational examples
	Automatically adapting any quantum computation to a given topology
	Examples of quantum hardware

	Proposed solution
	Hardware-aware SWAP- and Bridge-based heuristic search
	Initial mapping
	Metrics

	Evaluation and comparison of the proposed HA Algorithm
	Methodology
	Experimental results

	Conclusion

	Variational quantum linear solver
	Introduction
	Quantum error correction
	Quantum error mitigation

	Variational quantum algorithms
	General idea
	Ansatz
	Barren plateaus

	The Variational Quantum Linear Solver
	Cost functions
	Linear systems of interest

	Results of the study
	Global versus local cost function
	Dependence on the condition number
	Dependence on the size of the linear system
	Running VQLS on noisy hardware

	Conclusion

	V Noise characterisation
	Single qubit tomography visualisation
	Introduction
	Single-Qubit State Tomography
	Maximum-Likelihood Quantum State Tomography
	Specialising to Single-Qubit State Tomography
	Single-Qubit State Tomography Experiment Design

	Vector Field Visualisation of Single-Qubit State Tomography
	Vector Field Visualisation Examples
	Visualisation of State Degradation

	Signatures of Single-Qubit Data Corruption
	Open-Source Software Implementation
	Conclusion

	VI Outlooks and conclusion
	Conclusion
	Important results
	Research perspectives

	Bibliography

