ECERFACS

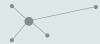
CENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUE

Advances in implementation of Hamiltonian Simulation algorithms Application to the 1-D wave equation

Adrien Suau adrien.suau@cerfacs.fr CERFACS

In collaboration with Gabriel Staffelbach gabriel.staffelbach@cerfacs.fr CERFACS

www.cerfacs.fr



Acknowledgements

Thanks to

- Reims university for giving me an access to their QLM.
- Total for giving me an access to their QLM & work.
- Atos for the technical support.
- Ter@tec for all the Quantum Computing events.

Purpose of this presentation

Goal of the presentation

Present & analyse the results of the quantum wave equation solver implementation

Not included in this presentation

Full explanation of the algorithm used and the implementation

Objective:

Answer to:

- With today's resources & algorithms, are we able to implement a solver?
- Is the implementation efficient when compared to classical?

Is quantum computing now?

Quantum wave equation solver

Results on a practical case

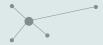
Actual quantum technology Quantum hardware

Quantum hardware is real...

- ▶ IBM: 4 chips, 20 qubits max.
- Intel: 3 chips, 49 qubits max.
- Google: 1 chip, 72 qubits max.

...but a lot of technical difficulties

- Low coherence times
- High error-rates
- Scaling qubit count is very challenging



What is a *quantum simulator*?

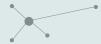
A **classical** software running on **classical** CPU that emulates **quantum** hardware

Characteristic	Real hardware	Simulator (QLM)
Can provide a quantum speedup	\checkmark	×
Maximum Qubits	$\sim 70^*$	$\sim 40^*$
Error-free	×	\checkmark
Debug information	×	\checkmark
Hardware independant	×	\checkmark

*Data gathered in May 2019

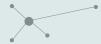
Today, simulators are used instead of hardware chips because:

- Software is easier to debug.
- Can adapt to specific hardware afterwards. Example: the wave equation solver has been implemented on the QLM and then adapted to IBM chip "Melbourne".



Quantum wave equation solver What is Hamiltonian Simulation? Why Hamiltonian Simulation is important? How to solve the wave equation on a quantum computer?

Results on a practical case



Quantum wave equation solver What is Hamiltonian Simulation?

Why Hamiltonian Simulation is important? How to solve the wave equation on a quantum computer?

Results on a practical case

Time-dependent Schrödinger equation

The solution of the time-dependent Schrödinger equation governing the evolution of a physical system

$$\frac{d}{dt}\left|\Psi\left(t\right)\right\rangle = -iH\left|\Psi\left(t\right)\right\rangle$$

is given by

CFRFACS

$$\left|\Psi\left(t\right)\right\rangle=e^{-iHt}\left|\Psi\left(0\right)\right\rangle$$

Time-dependent Schrödinger equation

The solution of the time-dependent Schrödinger equation governing the evolution of a physical system

$$\frac{d}{dt}\left|\Psi\left(t\right)\right\rangle = -iH\left|\Psi\left(t\right)\right\rangle$$

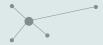
is given by

$$\left|\Psi\left(t\right)\right\rangle=e^{-iHt}\left|\Psi\left(0\right)\right\rangle$$

Remark:

CFRFACS

The matrix ${\cal H}$ has a size that grows exponentially with the physical system size.

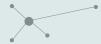


Problem formalisation:

Given an Hamiltonian matrix H, a time t, a precision ϵ and a basis of several quantum gates, find a sequence of quantum gates $U = U_1 \dots U_n$ picked from the given basis that approximates the unitary matrix e^{-iHt} such that

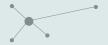
$$\left|\left|e^{-iHt} - U\right|\right|_{\mathsf{sp}} \leqslant \epsilon$$

with $||\cdot||_{\text{sp}}$ the spectral norm.



Quantum wave equation solver What is Hamiltonian Simulation? Why Hamiltonian Simulation is important? How to solve the wave equation on a quantum computer?

Results on a practical case

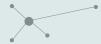


Hamiltonian Simulation can be used as a subroutine for:

- $1. \ the \ computation \ of \ molecular \ energies^1$
- 2. linear systems resolution²
- 3. graph algorithms³
- 4. partial differential equations resolution⁴

¹https://docs.microsoft.com/en-us/quantum/libraries/chemistry/ ²Harrow, Hassidim, and Lloyd, "Quantum Algorithm for Linear Systems of Equations".

³Childs, Cleve, et al., "Exponential algorithmic speedup by quantum walk". ⁴Childs and Liu, "Quantum spectral methods for differential equations".



Quantum wave equation solver What is Hamiltonian Simulation? Why Hamiltonian Simulation is important? How to solve the wave equation on a quantum computer?

Results on a practical case

Quantum wave equation solver

How to solve the wave equation on a quantum computer?

According to Costa, Jordan, and Ostrander⁵, the wave equation

$$\frac{d^2}{dt^2}\phi = \frac{d^2}{dx^2}\phi$$

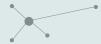
+ boundary conditions

+ initial conditions

+ fixed propagation speed c = 1.

can be solved by simulating the action of a specific Hamiltonian to a quantum state encoding the initial state.

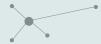
⁵Pedro C. S. Costa, Stephen Jordan, and Aaron Ostrander. "Quantum algorithm for simulating the wave equation". In: *Physical Review A* 99 (1 Jan. 2019). Phys. Rev. A 99, 012323 (2019). DOI: 10.1103/PhysRevA.99.012323. eprint: 1711.05394v1. URL: http://arxiv.org/abs/1711.05394v1.



Quantum wave equation solver

Results on a practical case

Methodology Quantum solver VS. finite differences Required hardware characteristics



Quantum wave equation solver

Results on a practical case

Methodology Quantum solver VS. finite differences Required hardware characteristics

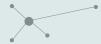
Results on a practical case Methodology

Default values

If not stated otherwise, the default values used for each graph are:

• Precision
$$||e^{-iHt} - U||_{sp} \leq \epsilon = 10^{-5}$$

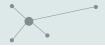
- ▶ Number of discretisation points $N_{\text{discr}} = 32$
- Order of the product-formula used $PF_{\text{order}} = 1$
- Simulation physical time t = 1



Quantum wave equation solver

Results on a practical case

Methodology Quantum solver VS. finite differences Required hardware characteristics



CERFACS

Quantum solver:

 $\epsilon = 10^{-2}$

 \blacktriangleright N_{discr} = 16

Results on a practical case

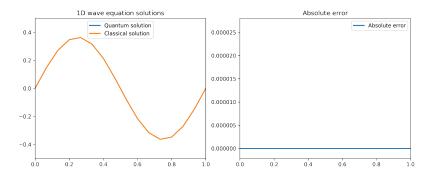
Comparison of the quantum solver with a classical solver

Classical solver

Finite differences

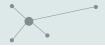
•
$$\delta x = \frac{1}{(N_{\text{discr}}+1)}$$

• $\delta t = 10^{-5}$



 $\blacktriangleright PF_{order} = 1$

▶ $t \in [0, 1]$



CERFACS

Quantum solver:

 $\epsilon = 10^{-2}$

 \blacktriangleright N_{discr} = 16

Results on a practical case

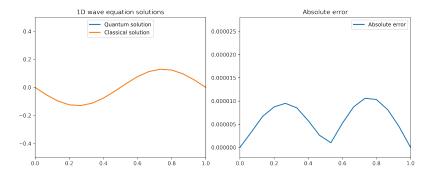
Comparison of the quantum solver with a classical solver

Classical solver

Finite differences

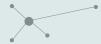
•
$$\delta x = \frac{1}{(N_{\text{discr}}+1)}$$

• $\delta t = 10^{-5}$



 $\blacktriangleright PF_{order} = 1$

▶ $t \in [0, 1]$



Quantum wave equation solver

Results on a practical case

Methodology Quantum solver VS. finite differences Required hardware characteristics

About gate counts and timing estimations

- Gate counts do not take into account hardware topology
- Gate counts are computed from the generated circuits (no post-generation optimisation)
- Gate counts performed after a translation from the simulator gate-set to IBM's chips gate-set
- Estimated execution times are computed using ¹ and ²

¹https://github.com/Qiskit/ibmq-device-information/tree/ master/backends/melbourne/V1#gate-specification ²https://github.com/Qiskit/ibmq-device-information/blob/ master/backends/melbourne/V1/version_log.md#gate-specification

Results on a practical case The no fast-forwarding theorem

No fast-forwarding theorem:

The optimal gate complexity for a **generic** Hamiltonian simulation algorithm is O(t), t being the simulation time.

Andrew M. Childs and Robin Kothari. "Limitations on the simulation of non-sparse Hamiltonians". In: (Aug. 2009). Quantum Information and Computation 10, 669-684 (2010). eprint: 0908.4398v2. URL: http://arxiv.org/abs/0908.4398v2.

差 CERFACS

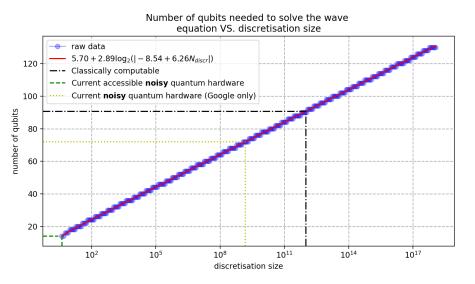
Results on a practical case

Required hardware characteristics

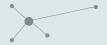
ECERFACS Advance

Results on a practical case

Required hardware characteristics

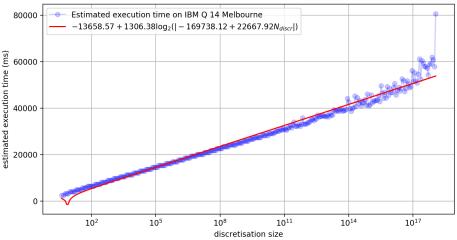


CERFACS



Required hardware characteristics

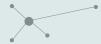
Estimated execution time on IBM Q 14 Melbourne VS. discretisation size



CERFACS

Conclusion

- 1. Validated implementation of a quantum wave equation solver
- 2. Confirms theoretical complexity
- 3. Hardware requirements are clear but too high for today's chips
- 4. Atos QLM allows to investigate algorithms and start evaluating the benefit of practical applications



- Extend the wave equation solver to inhomogeneous medium (non constant propagation speed c),
- Implement Neumann boundary conditions,
- Implement a 2-D wave equation solver,

Current work group:

- 1. Charles Moussa: PhD student in Quantum Machine Learning.
- 2. Yuan Yao: Intern studying the Variational Quantum Eigensolver.
- 3. Tam'si Ley: Intern studying Quantum Gradient Descent.
- 4. Adrien Suau: Starting PhD in quantum computing in the next few months.

Supervised by:

- Henri Calandra
- Gabriel Staffelbach

Thank you for your attention! Any question?

Contact information:

- Mail: adrien.suau@cerfacs.fr
- Phone: +33(0)5 61 19 31 19